Search Results

You are looking at 1 - 2 of 2 items for :

  • "dehydrohalogenation" x
  • Refine by Access: All Content x
Clear All

Abstract  

Vinylidene chloride copolymers have a number of superior properties, most notably, a high barrier to the transport of oxygen and other small molecules. As a consequence, these materials have assumed a position of prominence in the packaging industry. At processing temperatures these copolymers tend to undergo degradative dehydrochlorination. The dehydrochlorination reaction is a typical chain process with distinct initiation, propagation, and termination phases. It has been demonstrated that initiation of degradation is strongly facilitated by the presence of unsaturation along the backbone. Such unsaturation may be introduced via interaction of the polymer with a variety of agents which might commonly be encountered during polymerization or processing. The presence of an unsaturated unit within the polymer generates an allylic dichloromethylene which may function as a major defect (labile) site for the initiation of degradation. The conversion of these dichloromethylene units into non-reactive groups would interrupt propagation of the dehydrochlorination reaction and lead to the stabilization of the copolymer. Potential stabilization in the presence of metal formates has been examined using a vinylidene chloride/methyl acrylate (five mole percent) copolymer and thermogravimetric techniques. The effect of the metal formate on the stability of the polymer reflects the relative halogenophilicity of the metal cation present. Metal formates (sodium, calcium, nickel(II) and to a lesser extent lead(II), cadmium, manganese(II) and magnesium) may be expected to be ineffective as stabilizers for vinylidene chloride copolymers. At the other extreme, metal formates which contain cations sufficiently acidic to actively strip chlorine from the polymer backbone, e.g., zinc formate, will function to enhance the degradation process. An effective carboxylate stabilizer must contain a metal cation sufficiently acidic to interact with allylic chlorine and to facilitate its displacement by the carboxylate anion. Copper(II) formate may possess the balance of cation acidity and carboxylate activity to function as an effective stabilizer for vinylidene chloride copolymers.

Restricted access

Abstract  

Vinylidene chloride copolymers containing a predominance of vinylidene chloride (85-90%) have long been important barrier polymers widely used in the plastics packaging industry. These materials display excellent barrier to the ingress of oxygen and other small molecules (to prevent food spoilage) and to the loss of food flavor and aroma constituents (to prevent flavor scalping on the supermarket shelf). While these polymers have many outstanding characteristics, which have made them commercial successes, they tend to undergo thermally-induced degradative dehydrohalogenation at process temperatures. The dehydrochlorination occurs at moderate temperatures (120-200C) and is a typical chain process involving initiation, propagation and termination phases. Defect structures, namely internal unsaturation (allylic dichloromethylene groups), serve as initiation sites for the degradation. These may be introduced during polymerization or during subsequent isolation and drying procedures. If uncontrolled, sequential dehydrohalogenation can lead to the formation of conjugated polyene sequences along the polymer mainchain. If sufficiently large, these polyenes absorb in the visible portion of the electromagnetic spectrum, and give rise to discoloration of the polymer. The dehydrochlorination process may be conveniently monitored by thermogravimetric techniques. Both initiation and propagation rate constants may be readily obtained.

Restricted access