Search Results

You are looking at 1 - 7 of 7 items for :

  • "desorption energy distribution functions" x
  • All content x
Clear All

Abstract  

We have investigated the temperature-programmed desorption (TPD) of ammonia during the activation of NH4Na-mordenites of different exchange degrees. Using a regularization method, desorption energy distribution functions have been calculated. The obtained results indicate the heterogeneity of the bridging Si-OH-Al groups in HNa-mordenites. This was concluded from the width of the distribution functions and from the presence of submaxima. For HNa-mordenites of exchange degrees below 50%, containing only hydroxyls in the broad channels, two distinct submaxima are present, thus suggesting the presence of at least two kinds of bridging hydroxyls of various acid strengths. In HNa-mordenites of exchange degrees above 50%, the hydroxyls appear in narrow channels and the distribution of ammonia desorption energy broadens on the side of higher energies. This may be related to a strong stabilization of ammonium ions inside narrow channels. The maximum concentrations of hydroxyls of desorption energies between 95 and 135 kJ mol-1 and between 135 and 165 kJ mol-1 calculated from TPD data were 3.9 and 3.3 OH per unit cell (u.c.). These values agree well with our previous IR results of concentrations of hydroxyls in broad and in narrow channels (3.7 and 2.8 OH per u.c.). The TPD data obtained for the heterogeneity of OH groups in HNa-mordenites are in accordance with the IR data concerning ammonia desorption. The IR band of OH groups restoring upon saturation of all the hydroxyls with ammonia and subsequent step-by-step desorption at increasing temperatures shifts to lower frequencies indicating that there are hydroxyls of various acid strengths and the less acidic hydroxyls restore first at lower desorption temperatures.

Restricted access

Abstract  

We have investigated the interaction of a few 5-ring organic compounds (cyclopentane, cyclopentene, furan, 2-methylfuran, 2,5-dihydrofuran and tetrahydrofuran) with alkali-metal cation-exchanged faujasites (LSX, X and Y types) by means of temperature-programmed desorption (TPD). The desorption behavior at higher temperatures of all probe molecules on the sodium ion containing faujasites with different Si/Al ratios reflects the higher cation content of zeolites with greater aluminum content. Only the desorption profiles of tetrahydrofuran and 2,5-dihydrofuran show, depending on the kind of cation, additional desorption features at higher temperatures. Using a regularization method, desorption energy distribution functions for furan and tetrahydrofuran were calculated. The calculated desorption energy distributions clearly illustrate the very different adsorption behavior of furan and tetrahydrofuran which leads to large differences in the binding energies between the corresponding adsorption complexes.

Restricted access

Abstract  

The paper presents physico-chemical properties of mixed adsorbents in the clinoptylolite (mordenite)/SiO2 system containing 30, 50, 80 mass% zeolite. Adsorption capacity towards polar (water, butanol) and non-polar (n-octane) substances as well as total surface heterogeneity (energetic and geometrical) were determined. Desorption energy distribution functions as well as fractal dimensions were also determined and compared with the low-temperature nitrogen adsorption data. Irregular shapes of the curves q=f(E d) as well as large values of volumetric fractal dimensions (D f~2.6) revealed heterogeneous properties of the zeolite/SiO2 system surfaces. Addition of zeolite increases total heterogeneity of the material.

Restricted access

Summary Using temperature-programmed desorption (TPD), we have investigated the interaction of carbon dioxide with alkali-metal cation-exchanged faujasite type zeolites (LSX, X and Y). TPD in the temperature range between 300 and 500 K results in desorption profiles of different intensities depending on the kind of cation and the aluminium content of zeolites. For NaX the desorbed amount corresponds to about one percent of the saturation capacity at 298 K. In case of NaX and X type zeolites exchanged with Cs+ ions an additional desorption peak above 500 K could be observed. Taking into account desorption curves of different heating rates, desorption energy distribution functions were calculated by using an extended integral equation. Initial adsorbed CO2 could be assigned to carbonate species in different environments by DRIFT spectroscopy.

Restricted access

Abstract  

We have investigated the interaction of water with Na+-ion exchanged zeolites of different structures (LTA, FAU, ERI, MOR and MFI) by means of temperature-programmed desorption (TPD). The non-isothermal desorption of water shows, depending on the zeolite type, differently structured desorption profiles. In every case the profiles have, however, two main ranges. Using a regularization method, desorption energy distribution functions have been calculated. The desorption energy distributions between 42–60 kJ mol−1, which can be attributed to a non-specific interaction of water, show two clearly distinguished energy ranges. The water desorption behaviour of this range correlates with the electronegativity of the zeolites and the average charge of the lattice oxygen atoms calculated by means of the electronegativity equalization method (EEM). The part of the desorption energy distributions in the range of 60–90 kJ mol−1, reflecting interactions of water with Na+ cations, shows two more or less pronounced maxima. In agreement with vibrational spectroscopic studies in the far infrared region, it may be concluded that all samples under study possess at least two different cation sites.

Restricted access

Studies of surface properties of Na- and La-montmorillonites

Thermogravimetry Q-TG, sorptometry, porosimetry and AFM methods

Journal of Thermal Analysis and Calorimetry
Authors: P. Staszczuk, J. Bazan, M. Błachnio, D. Sternik, and N. Garcia

Abstract  

This paper presents possible applications of thermal analysis, sorptometry and porosimetry to study physico-chemical properties of Na- and La-montmorillonite samples, especially for determination of total surface heterogeneity. The quasi-isothermal thermogravimetric (Q-TG) mass loss and its first derivative (Q-DTG) curves with respect to temperature and time obtained during programmed liquid thermodesorption under quasi-isothermal conditions have been used to study adsorbed layers and heterogeneous properties of the Na- and La-montmorillonites. Calculations of the desorption energy distribution functions by analytical procedure using mass loss Q-TG and differential mass loss Q-DTG curves of thermodesorption under quasi-isothermal conditions of polar and non-polar liquid vapours preadsorbed on a material surface are presented. Parameters relating to porosity of samples were determined by sorptometry, mercury porosimetry and atomic force microscopy (AFM). From nitrogen sorption isotherms from sorptometry and porosimetry methods, the fractal dimensions of montmorillonites have been calculated. Moreover, a new approach is proposed to calculate fractal dimensions of materials obtained from Q-TG curve; this is compared with values obtained by the above methods. The total heterogeneous properties (energy distribution function and pore-size distribution functions) of samples studied were estimated. The radius and pore volume of the tested samples calculated on the basis of thermogravimetry, sorptometry and porosimetry techniques were compared and good correlations obtained.

Restricted access

-programmed thermodesorption under the quasi-isothermal conditions were worked out on the theoretical basis and methods of calculating the desorption energy distribution functions [ 7 , 8 ] to estimate the total heterogeneity of solid surfaces [ 9 ] and fractal coefficients

Open access