Search Results

You are looking at 1 - 10 of 21 items for :

  • "direct product" x
Clear All

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product GH, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of P nH, C nH, P n[H], C n[H], and K m,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.

Restricted access

Let us consider a triangular array of random vectors (X (n) j; Y (n) j), n = 1;2;: : :, 1 5 j 5 kn, such that the first coordinates X (n) j take their values in a non-compact Lie group and the second coordinates Y (n) j in a compact group. Let the random vectors (X (n) j; Y (n) j) be independent for fixed n, but we do not assume any (independence type) condition about the relation between the components of these vectors. We show under fairly general conditions that if both random products Sn = kn Q j=1 X (n) j and Tn = kn Q j=1 Y (n) j have a limit distribution, then also the random vectors (Sn; Tn) converge in distribution as n !1 . Moreover, the non-compact and compact coordinates of a random vector with this limit distribution are independent.

Restricted access
Authors: G. Aslim, O. Özbakir and E. Skljarenko
Restricted access
Restricted access

Abstract  

It is proved that the class of finite semimodular lattices is the same as the class of cover-preserving join-homomorphic images of direct products of finitely many finite chains.

Restricted access

Rédei's theorem asserts that if a finite abelian group is expressed as a direct product of subsets of prime cardinality, then at least one of the factors must be periodic. (A periodic subset is a direct product of some subset and a nontrivial subgroup.) A. D. Sands proved that if a finite cyclic group is the direct product of subsets each of which has cardinality that is a power of a prime, then at least one of the factors is periodic. We prove that the same conclusion holds if a general finite abelian group is factored as a direct product of cyclic subsets of prime cardinalities and general subsets of cardinalities that are powers of primes provided that the components of the group corresponding to these latter primes are cyclic.

Restricted access

Abstract

In this article, we study the class of rings in which every regular locally principal ideal is projective called LPP-rings. We investigate the transfer of this property to various constructions such as direct products, amalgamation of rings, and trivial ring extensions. Our aim is to provide examples of new classes of commutative rings satisfying the above-mentioned property.

Restricted access