Search Results

You are looking at 1 - 10 of 36 items for :

  • "enthalpy relaxation" x
  • Refine by Access: All Content x
Clear All

Abstract  

In the course of the formulation of coated dosage forms, the selection of the suitable composition of the coating system is of great importance in respect of the final dosage form. Since the applied coating systems are multicomponent, the possible interactions between the components determine the physico-chemical stability of the formulated dosage form, the drug release process, as well as the formulation parameters. In the present study, the influence of the applied plasticizer, dibutyl sebacate on the enthalpy relaxation of casted Eudragit L 30D films was determined as a function of the plasticizer concentration. The enthalpy relaxation was recorded by DSC during the applied isothermal recovery process of Eudragit films. The obtained results indicate that enthalpy relaxation can be measured by DSC at 20 mass/mass% dibutyl sebacate concentration, which refers to the increased molecular mobility consequently to the effect of the interaction between the polymer and plasticizer.

Restricted access

Abstract  

The volume and enthalpy relaxation rate of inorganic glasses and organic polymeric materials subjected to temperature jump T has been analyzed. It is shown that the relaxation behavior in isothermal conditions can be compared on the basis of the fictive relaxation rate defined as R f=(dT f/dlogt)i. No significant difference between volume and enthalpy relaxation rate has been found for all materials examined. A simple equation relating the R f and parameters of Tool-Naraynaswamy-Moynihan (TNM) phenomenological model has been derived. This equation predicts increasing R f with the magnitude of temperature jump. It seems that correct determination of TNM parameters might be problematic for slowly relaxing polymers as the effect of these parameters becomes comparable with experimental uncertainty.

Restricted access

Abstract  

the volume and enthalpy relaxation in a-PMMA subjected to temperature jumps in t g region has been analysed. The measured H and V data were compared with respect to aging time and proportionality between them as a slope of (∂H/∂V)T dependencies has been found. According to previous works the slope was identified as an apparent bulk modulus, K a. This method is applied to aging following temperature up-jumps after consolidation periods of varying lengths. the main finding is a marked increase of K a with consolidation time, approaching a limiting value in an asymptotic fashion.

Restricted access

Summary Volume and enthalpy relaxation in polycarbonate subjected to double temperature jumps in the T g region has been analysed. It concerns both initial T down-jump from equilibrium above T g to consolidation temperature below T g and fina1 T up-jump to relaxation temperature, also below T g. The measured H and V data after T up-jump were compared with respect to aging time calculating (dH/dV) ratio denoted as aging bulk modulus, K a. According this new methodology H and V relaxation response after T up-jump demonstrates differences in relaxation responses.

Restricted access

Abstract  

We report the results of an investigation by differential scanning calorimetry (DSC) of two mobility controlled processes in the amorphous phas e of semicrystalline PEEK — enthalpy relaxation below the glass transition (T g) and secondary crystallization aboveT g. Both result in the observation of an endothermic peak just above the annealing temperature in the DSC scan of the polymer — the enthalpy recovery peak and the low temperature melting peak, respectively. There is a striking similarity in the time and temperature dependence of the endothermic peak for these two processes. These results are reminiscent of those obtained from small strain creep studies of “physical aging” of semicrystalline PEEK below and aboveT g.

Restricted access

Abstract  

A new method of calculation of parameters of enthalpy relaxation models is proposed. Regression analysis treatment compares the experimental and calculated values of relaxation enthalpy. The experimental values of relaxation enthalpy are obtained by numerical integration of the difference between the two DSC curves. Contrary to the overall shape of the DSC curve the integral values are not affected by particular heat flow conditions during the DSC experiment. The Narayanaswamy's numerical model based on the Kohlrausch—William—Watts relaxation function was used to calculate the theoretical values of relaxation enthalpy. The application of the proposed method on the DSC experimental data of enthalpy relaxation of As2Se3 is shown.

Restricted access

Simultaneous volume and enthalpy relaxation

The effect of experimental conditions

Journal of Thermal Analysis and Calorimetry
Authors: M. Liška and M. Chromčíková
Restricted access

Abstract  

We employ temperature modulated DSC (TMDSC) to determine the dependence of the fictive temperature on cooling rate for a series of polychlorinated biphenyls (PCB). From the slopes of semi-logarithmic plots of cooling rate vs. fictive temperature, the latter normalized by the fictive temperature for an arbitrary cooling rate, we determine the enthalpic fragilities. Despite significant differences in glass transition temperature and chemical structure (specifically chlorine content), the PCB have the same fragility. The value of the fragility determined using TMDSC is consistent with the fragility previously determined using dielectric relaxation spectroscopy.

Restricted access

Abstract  

Structural relaxation for simple and more complex thermal histories is described by a phenomenological model based on a non-exponential relaxation function, the reduced-time concept and the nonlinear structural contribution to the relaxation time. The history, development of experimental techniques and data analysis is described. It is shown that the volume and enthalpy relaxation response can conveniently be compared on the basis of a fictive relaxation rate, R f. A simple equation relating R f and the parameters of the phenomenological model is given. The calculated data for moderate departures from equilibrium are in good agreement with our experiments and data previously reported in the literature.

Restricted access