Search Results

You are looking at 1 - 10 of 37 items for :

  • "entire functions" x
  • Refine by Access: All Content x
Clear All

References [1] Baker , I. N. 1964 Entire functions with linearly distributed values Math. Z. 86

Restricted access

Abstract  

Let f be an entire function of exponential type satisfying the condition
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$f(z) \equiv e^{i\gamma } e^{i\tau z} \overline {f(\bar z)}$$ \end{document}
for some real γ. Lower and upper estimates for ∫−∞ |f′(x)|p dx in terms of ∫−∞ |f(x)|p dx, for such a function f belonging to L p(R), have been known in the case where p ∊ [1, ∞) and γ = 0. In this paper, these estimates are shown to hold for any p ∊ (0, ∞) and any real γ.
Restricted access

Abstract  

The PDE-preserving operators O on the space of nuclearly entire functions of bounded type HNb(E) on a Banach space E are characterized. An operator is PDE-preserving when it preserves homogenous solutions to homogeneous convolution equations. We establish a one to one correspondence between O and a set Σ of sequences of entire functionals, i.e. exponential type functions. In this way, algebraic structures on Σ, such as ring structures, can be carried over to O and vice versa. In particular, it follows that O is a non-commutative ring (algebra) with unity with respect to composition and the convolution operators form a commutative subring (subalgebra). We discuss range and kernel properties, for the operators in O, and characterize the projectors (onto polynomial spaces) in O by determining the corresponding elements in Σ.

Restricted access

Abstract  

LetB σ be the class of entire functions of exponential type σ, real valued and bounded in modulus by 1 in the real line. A setG of functions defined on the segment [-T-r, T+r], wherer is a fixed positive number, is called an (&, δ)-net of the classB σ on the segment [-т, т] if for any f∃B σ there existsgG such that for anyx∃[-T,T]

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left| {f(x) - g(x)} \right| \leqq \frac{\varepsilon }{{2r}}\int\limits_{x - r}^{x + r} {\left| {f(t)} \right|dt + \delta .}$$ \end{document}
The main result consists in the following: For any positive σ, r, &≦1, δ≦1 and sufficiently largeT we have
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$H_{\varepsilon ,\delta } (B_\sigma ,T) \leqq \frac{{2\sigma T}}{\pi }\log \frac{{c(\sigma r)}}{{\max (\varepsilon ,\delta )}},$$ \end{document}
where c(σr) depends only on the product σr. The main tool of the proof of this inequality is the following estimate of the derivative of a polynomialP(x) with real coefficients:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\| {P'(x)} \right\|_{L_p ( - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}) \leqq } c\left( {q + 1 + \sum\limits_{i = 1}^{n - q} {\frac{1}{{\left| {a_i } \right|^2 }}} } \right)\left\| {P(x} \right\|_{L_p ( - 1,1)} ,$$ \end{document}
whereq is the number of roots of the polynomialP(x) lying in the disk z<1; a1, ..., an−g are the other roots, с is an absolute constant, and 1≦p≦∞.

Restricted access