Search Results
Acta Mathematica Hungarica
Author:
Yvonne Buttkewitz
References [1] Daboussi , H. 1996 Effective estimates of exponential sums over primes Berndt , B. C. (eds.) et al. Analytic
Abstract
We prove that almost all integers N satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 5; 6; 7; 8, i.e., N = p
1
3 + ... + p
j
3 with |p
i
− (N/j)1/3| ≦ \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$N^{1/3 - \delta _j + \varepsilon }$$
\end{document} (1 ≦ i ≦ j), for δ
j
= 1/45; 1/30; 1/25; 2/45, respectively.
Studia Scientiarum Mathematicarum Hungarica
Authors:
Jinjiang Li
,
Min Zhang
, and
Haonan Zhao
] X. M . Ren . On exponential sums over primes and application in Waring–Goldbach problem . Sci. China Ser. A , 48 ( 6 ): 785 – 797 , 2005 . [9] R. C . Vaughan . The Hardy–Littlewood Method , 2nd edn . Cambridge University Press , Cambridge