Search Results

You are looking at 1 - 1 of 1 items for :

  • "fibre yield" x
Clear All

Combining ability and heterosis were calculated for fourteen lines of linseed in a line × tester mating design using twelve lines and two diverse testers in two different environments. The hybrids and parental lines were raised in a completely randomized block design with three replications to investigate seed and fibre yield and their component traits. Genetic variation was significant for most of the traits over environments. Combining ability studies revealed that the lines KL-221 and LCK-9826 were good general combiners for seed yield and most of its components, whereas LMH-62 and LC-2323 were good general combiners for yield components only. Moreover, KL-221 was also a good general combiner for fibre yield. Similarly, B-509 and Ariane were good general combiners for fibre yield and most of its components. Among the specific cross combinations, B-509 × Flak-1 was outstanding for seed yield per plant and B-509 × KL-187 and LC-2323 × LCK-9826 for fibre yield per plant, with high SCA effects. In general, the hybrids excelled their respective parents and the standard checks for most of the characters studied. Based on the comparison of mean performance, SCA effects and the extent of heterosis, the hybrids LC-2323 × LCK-9826 and B-509 × KL-221 appeared to be the most promising for both seed and fibre yield. Other promising combinations were LC-2323 × KL-210 and B-509 × Ariane for seed and fibre yield, respectively. The superiority of LC-2323, LCK-9826, KL-221, B-509 and Ariane as good general combiners was further confirmed by the involvement of these parents in the desirable cross combinations.

Restricted access