Search Results

You are looking at 1 - 8 of 8 items for :

• "functions of exponential type"
• Refine by Access: All Content
Clear All

Inequalities for entire functions of exponential type satisfying $$f(z) \equiv e^{i\gamma } e^{i\tau z} \overline {f(\bar z)}$$

Acta Mathematica Hungarica
Authors: N. Govil and M. Qazi

Abstract

Let f be an entire function of exponential type satisfying the condition
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$f(z) \equiv e^{i\gamma } e^{i\tau z} \overline {f(\bar z)}$$ \end{document}
for some real γ. Lower and upper estimates for ∫−∞ |f′(x)|p dx in terms of ∫−∞ |f(x)|p dx, for such a function f belonging to L p(R), have been known in the case where p ∊ [1, ∞) and γ = 0. In this paper, these estimates are shown to hold for any p ∊ (0, ∞) and any real γ.
Restricted access

Equivalent Characterization of Entire Functions of Exponential Type

Analysis Mathematica
Authors: Gensun Fang and Xuedong Chen
Restricted access

A Grünwald-Marcinkiewicz type theorem for Lagrange interpolation by entire functions of exponential type

Acta Mathematica Hungarica
Authors: F. Pintér and P. Vértesi
Restricted access

К вопросу об устойчив ости классов единств енности интерполяционных за дач

Analysis Mathematica
Author: В. Л. Андриянов

The majority of the formerly considered interpolatory problems depending on a parameterh and dealing, on the basis of certain assigned elements, with the construction of the set of all entire functionsF(z) from a given classK, exhibits a stability property with respect to small changes of the parameterh involved. The present paper contains an example of such an interpolatory problem (as well as its complete solution), which depends on a real parameterh and is posed on a certain class of functions of exponential type, and for which the uniqueness class is not stable for any irrationalh. The problem mentioned is, in a certain sense, a modification of the known Lidstone problem concerning entire functions of exponential type.

Restricted access

О росте вдоль прямой ц елых функций экспоне нциального типа с заданными нулями

Analysis Mathematica
Author: Б. Н. ХАБИБУЛЛИН
The following result is proved. LetΛn} be a sequence of complex numbers with ¦Reλ n¦≧δ¦λ n ¦, δ>0, and letg be an entire function of exponential type with a sequence of zeros which satisfies the same condition. There exists an entire function of exponential typef≠0 such thatf(λ)=0 and ¦f(iy)¦≦¦g(iy)¦,yR, if and only if there exists a constantM such that for all numbersr andR, 0<r<R<+∞, we have
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\max \left\{ {\mathop \sum \limits_{\mathop {r \leqq |\lambda _n |< R}\limits_{\operatorname{Re} \lambda _n< 0} } - \operatorname{Re} \frac{1}{{\lambda _n }},\mathop \sum \limits_{\mathop {r \leqq |\lambda _n |< R}\limits_{\operatorname{Re} \lambda _n > 0} } \operatorname{Re} \frac{1}{{\lambda _n }}} \right\} \leqq \frac{1}{{2\pi }}\mathop \smallint \limits_r^R \frac{{\ln |g(iy)g( - iy)|}}{{y^2 }}dy + M.$$ \end{document}
Restricted access

Polynomial perturbations of transcendental entire functions in the Laguerre–Pólya class

Acta Mathematica Hungarica
Authors: George Csordas and Chung-Chun Yang

Some properties of functions of exponential type Bull. Amer. Math. Soc. 44 236 – 240 10.1090/S0002-9904-1938-06725-0 . [8

Restricted access

Estimate of (ε, δ)-entropy of a class of entire functions in an integral metric

Analysis Mathematica
Author: В. БУслАЕВ

Abstract

LetB σ be the class of entire functions of exponential type σ, real valued and bounded in modulus by 1 in the real line. A setG of functions defined on the segment [-T-r, T+r], wherer is a fixed positive number, is called an (&, δ)-net of the classB σ on the segment [-т, т] if for any f∃B σ there existsgG such that for anyx∃[-T,T]

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left| {f(x) - g(x)} \right| \leqq \frac{\varepsilon }{{2r}}\int\limits_{x - r}^{x + r} {\left| {f(t)} \right|dt + \delta .}$$ \end{document}
The main result consists in the following: For any positive σ, r, &≦1, δ≦1 and sufficiently largeT we have
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$H_{\varepsilon ,\delta } (B_\sigma ,T) \leqq \frac{{2\sigma T}}{\pi }\log \frac{{c(\sigma r)}}{{\max (\varepsilon ,\delta )}},$$ \end{document}
where c(σr) depends only on the product σr. The main tool of the proof of this inequality is the following estimate of the derivative of a polynomialP(x) with real coefficients:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\| {P'(x)} \right\|_{L_p ( - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}) \leqq } c\left( {q + 1 + \sum\limits_{i = 1}^{n - q} {\frac{1}{{\left| {a_i } \right|^2 }}} } \right)\left\| {P(x} \right\|_{L_p ( - 1,1)} ,$$ \end{document}
whereq is the number of roots of the polynomialP(x) lying in the disk z<1; a1, ..., an−g are the other roots, с is an absolute constant, and 1≦p≦∞.

Restricted access

Some Landau–Kolmogorov Type Inequalities for Differential Operators Generated by Polynomials

Studia Scientiarum Mathematicarum Hungarica
Authors: Vu Nhat Huy, Nguyen Ngoc Huy, and Chu Van Tiep

. Functions of exponential type . Ann. Math ., 65 : 582 – 592 , 1957 .  B . Sz.-Nagy . Uber Integralungleichungen zwischen einer Function und ihrer Ableitung . Acta Sci. Math ., 10 : 64 – 74 , 1941 .  V. M . Tikhomirov and G. G . Magaril

Restricted access