Search Results

You are looking at 1 - 10 of 11 items for :

  • "general sequences" x
  • All content x
Clear All

Abstract  

Let 0 ≦ a 1 < a 2 < ⋯ be an infinite sequence of integers and let r 1(A, n) = |(i;j): a i + a j = n, ij|. We show that if d > 0 is an integer, then there does not exist n 0 such that dr 1 (A, n) ≦ d + [√2d + ] for n > n 0.

Restricted access

Abstract

We present direct and strong converse theorems for a general sequence of positive linear operators satisfying some functional equations. The results can be applied to some extensions of Baskakov and Szász–Mirakyan operators.

Restricted access

sequences III., Studia Scientiarum Mathematicarum Hungarica , 22 , (1987), no. 1–4, 53–63. MR 89b :11015 Sós V. Problems and results on additive properties of general sequences III

Restricted access

Abstract  

Let a1<a2<... be an infinite sequence of positive integers, let k≥2 be a fixed integer and denote by Rk(n) the number of solutions of n=ai1+ai2+...+aik. P. Erdős and A. Srkzy proved that if F(n) is a monotonic increasing arithmetic function with F(n)→+∞ and F(n)=o(n(log n)-2) then |R2(n)-F(n)| =o((F(n))1/2) cannot hold. The aim of this paper is to extend this result to k>2.

Restricted access

Summary  

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathcal{A}=\{a_{1},a_{2},\dots{}\}$ \end{document} \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(a_{1} \le a_{2} \le \dots{})$ \end{document} be an infinite sequence of nonnegative integers, and let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $R(n)$ \end{document} denote the number of solutions of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $a_{x}+a_{y}=n$ \end{document} \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(a_{x},a_{y}\in\mathcal{A})$ \end{document}. P. Erds, A. Srkzyand V. T. Ss proved that if \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\lim_{N\to\infty}\frac{B(\mathcal{A},N)}{\sqrt{N}}=+\infty$ \end{document} then \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $|\Delta_{1}(R(n))|$ \end{document} cannot be bounded, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${B(\mathcal{A},N)}$ \end{document} denotes the number of blocks formed by consecutive integers in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathcal{A}$ \end{document} up to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $N$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\Delta_{k}$ \end{document} denotes the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $k$ \end{document}-th difference. The aim of this paper is to extend this result to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\Delta_{k}(R(n))$ \end{document} for any fixed \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $k\ge2$ \end{document}.

Restricted access

Abstract  

Montgomery and Vaughan improved a theorem of Erdős and Fuchs for an arbitrary sequence. Srkzy extended this theorem of Erdős and Fuchs for two arbitrary sequences which are "near" in a certain sense. Using the idea of Jurkat (differentiation of the generating function), we will extend similarly the result of Montgomery and Vaughan for "sufficiently near" sequences.

Restricted access

Erdős P., Sárközy A. Problems and results on additive properties of general sequences, I, Pacific J. Math. , Vol. 118, 1985, pp. 347–357. Sárközy A

Restricted access

In this paper we introduced the general sequence of linear positive operators via generating functions. Approximation properties of these operators are obtained with the help of the Korovkin Theorem. The order of convergence of these operators computed by means of modulus of continuity Peetre’s K-furictiorial and the elements of the usual Lipschitz class. Also we introduce the r-th order generalization of these operators and we evaluate this generalization by the operators defined in this paper. Finally we give some applications to differential equations.

Restricted access

. Lukács , Á. , & Kemény , F. ( 2014 ). Domain-general sequence learning deficit in specific language impairment . Neuropsychology , 28 ( 3 ), 472 – 483 . Marcus , G. F

Restricted access