Search Results

You are looking at 1 - 3 of 3 items for :

  • "homothety" x
  • All content x
Clear All

Let C be a convex body in the Euclidean plane. By the relative distance of points p and q we mean the ratio of the Euclidean distance of p and q to the half of the Euclidean length of a longest chord of C parallel to pq. In this note we find the least upper bound of the minimum pairwise relative distance of six points in a plane convex body.

Restricted access

Abstract  

Let

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\mathcal{G}}$$ \end{document}
be a group of affine transformations of the plane that contains a strict contraction and all translations. It is shown that any two topological discs
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$D,E \subseteq {\mathbb{R}}^2$$ \end{document}
are congruent dissection with respect to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\mathcal{G}}$$ \end{document}
such that only three topological discs are used as pieces of dissection. Two pieces of dissection do not suffice in general even if
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{G}$$ \end{document}
consists of all affine transformations.

Restricted access

We give a geometric characterization of inner product spaces among all finite dimensional real Banach spaces via concurrent chords of their spheres. Namely, let x be an arbitrary interior point of a ball of a finite dimensional normed linear space X. If the locus of the midpoints of all chords of that ball passing through x is a homothetical copy of the unit sphere of X, then the space X is Euclidean. Two further characterizations of the Euclidean case are given by considering parallel chords of 2-sections through the midpoints of balls.

Restricted access