Search Results

You are looking at 1 - 10 of 44 items for :

  • "hydrothermal treatment" x
  • Refine by Access: All Content x
Clear All

structures such as EPS are converted into simple soluble organics. Pre-treatment techniques are suggested to facilitate the hydrolysis step in order to achieve faster disintegration and higher degradation efficiency. Specifically, hydrothermal treatment has

Open access

Hydrothermal treatment of Zr, Ti, Sn and Ge hydrogenphosphates

Characterization of the derived compounds by thermal methods

Journal of Thermal Analysis and Calorimetry
Authors: P. Patrono, A. La Ginestra, C. Ferragina, M. A. Massucci, A. Frezza, and S. Vecchio

The Zr, Ti, Sn and Ge hydrogenphosphates, generally prepared in a crystalline form by the refluxing method, have been submitted to hydrothermal treatment at 180° and 300°C in order to observe if the preparation time can be shortened maintaining their chemical composition and their α-structure. Simultaneous TG and DTA together with XRD revealed to be very suitable techniques for the characterization of the obtained products.

Restricted access

Abstract  

Selenite was boiled in KCl solutions of different concentrations at the respective boiling temperatures and atmospheric pressure. The products were subjected to X-ray diffraction analysis, qualitative infrared analysis, differential thermal analysis and microscopic examination. The product obtained in 1.0 M KCl solution was the -form of calcium sulphate hemihydrate (-CaSO4·0.5H2O). In more concentrated KCl solution (1.5, 2.0, 2.5, 3.0, 3.5 or 4.0 M), the -form of calcium sulphate hemihydrate (-CaSO4·0.5H2O) was formed, and a reaction took place between KCl and CaSO4, which gave a double salt: potassium pentacalcium sulphate monohydrate (K2SO4·5CaSO4·H2O).

Restricted access

Summary Mechanical mixtures containing zirconia xerogel and increasing amount of crystalline yttria up to 40 mol%, were hydrothermally treated by microwave route at 110°C for 2h. All the treatments were performed in the presence of (KOH+K2CO3) mineralizer solution at concentration 0.2 M. Amorphous and hydrated ZrO2-Y2O3 solid solutions with yttria content up to 33.3 mol% (corresponding to Zr/Y molar ratio equal to 1), resulted after the hydrothermal treatments. A remarkable reduction of the surface area has been detected at increasing yttria content of the amorphous phases with a corresponding increase of the exothermic peak of crystallization. A mechanism of reaction for the formation of the amorphous solid solutions has been proposed.

Restricted access

Gelatinisation temperatures as a function of moisture content were determined for potato starch. The native starch was then hydrothermally treated at a temperature 3% (Kelvin degrees) below the gelatinisation peak temperature and at moisture levels varying from 20 to 67% (by weight). Gelatinisation temperatures, temperature ranges and enthalpy values were affected for all treated samples. However, two sample populations could be distinguished: those samples treated under ‘limited’ moisture conditions and other samples treated in the presence of ‘extragranular’ moisture. A two-step hydrothermal treatment further increased the gelatinisation temperature, but the effect of the second step was small in comparison to that of the first.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Ana Carla S. L. S. Coutinho, Solange A. Quintella, A. S. Araujo, Joana M. F. Barros, Anne M. G. Pedrosa, V. J. Fernandes Jr., and M. J. B. Souza

Abstract

Nanoporous silica with narrow pore size distribution has attracted increasing attention as a novel material for separations and reactions involving large molecules. SBA-15 has been synthesized in an acidic medium using a triblock copolymer as template. In this work, the SBA-15 was synthesized by the hydrothermal treatment at 373 K for 48 h, of a gel with the following overall molar composition: 1.0TEOS:0.017P123:5.7HCl:193H2O, where TEOS is tetraethyl orthosilicate and P123 is poly(ethylene oxide, propylene oxide and 1,4-dioxane). The obtained material was characterized by thermogravimetry, X-ray diffraction, infrared spectroscopy and BET surface area. A kinetic study using the model free model was accomplished in the stage of decomposition of the template (P123). The obtained value of the apparent activation energy was ca. 131 kJ mol−1.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Y. Zhao, R. Frost, Veronika Vágvölgyi, E. Waclawik, J. Kristóf, and Erzsébet Horváth

Abstract  

Yttrium doped boehmite nanofibres with varying yttrium content have been prepared at low temperatures using a hydrothermal treatment in the presence of poly(ethylene oxide) surfactant (PEO). The resultant nanofibres were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images showed the resulting nanostructures are predominantly nanofibres when Y-doping is less than 5%; in contrast Y-rich phases were formed when doping was around 10%. The doped boehmite and the subsequent nanofibres/nanotubes were analyzed by thermogravimetric and controlled rate thermal analysis methods. The boehmite nanofibres produced in this research thermally transform at higher temperatures than boehmite crystals and boehmite platelets. Boehmite nanofibres decompose at higher temperatures than non-hydrothermally treated boehmite.

Restricted access

Abstract  

Iron doped boehmite nanofibres with varying iron content have been prepared at low temperatures using a hydrothermal treatment in the presence of poly(ethylene oxide) surfactant. The resultant nanofibres were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). TEM images showed the resulting nanostructures are predominantly nanofibres when Fe doping is no more than 5%; in contrast nanosheets were formed if Fe doping was above 5%. For the 10% Fe doped boehmite, a mixed morphology of nanofibres and nanosheets were obtained. Nanotubes instead of nanofibres were observed in samples with 20% added iron. The Fe doped boehmite and the subsequent nanofibres/nanotubes were analysed by thermogravimetric and differential thermogravimetric methods. Boehmite nanofibres decompose at higher temperatures than non-hydrothermally treated boehmite and nano-sheets decompose at lower temperatures than the nanofibres.

Restricted access

Abstract  

Ruthenium catalysts have been prepared by incipient wetness impregnation of ruthenium(III) nitrosylnitrate, Ru(NO)(NO3)3 onto high surface area titanate supports obtained by hydrothermal treatment of TiO2 P25 in concentrated alkaline solutions. These Ru-containing catalysts were evaluated in the catalytic wet air oxidation of p-hydroxybenzoic acid (p-HBZ), a model compound representative of phenolic pollutants present in olive mills wastewaters, at 413 K and 50 bars of air. Two different titanates morphologies were tested as supports for this reaction: hydrogenotitanate nanotubes (HNT) obtained with concentrated NaOH and hydrogenotitanate nanowires (HNW) formed in the presence of highly concentrated KOH solution. The HNT and HNW supports and their corresponding supported Ru catalysts were characterized by means of N2 adsorption–desorption, XRD, UV and TEM analyses. Results showed that the use of high surface area titanate supports led to catalysts much more active than similar Ru catalysts supported on conventional TiO2 supports.

Restricted access

Products of hydrothermal treatment of the initial amorphous system MnxFe2−2x(OH)6−4x for 0≤x1 in 0.1x intervals, and products of their further thermal treatment, were examined by chemical analysis, X-ray, IR, and DTA techniques supported by magnetic measurements. After hydrothermal growth for lowx, hematite and goethite phases occurred. Although the goethite phase was still identifiable atx=0.6, formation of a solid solution with the isostructural groutite was not found. The ferrimagnetic spinel phase, which resists heating up to 400‡C, was present at 0.5≤x≤0.9. At higher temperatures, it transformed into the rhombohedral hematite type phase or into the cubic bixbyite phase. AtT≥900‡C, a ferrimagnetic spinel structure reappeared up tox=0.8. For x=0.9, the low- and high-temperature forms of the hausmannite phase occurred, forx= 1 passing from one form into another through Mn5O8 and partritgeite.

Restricted access