Search Results

You are looking at 1 - 5 of 5 items for :

  • "leaf rust pathotypes" x
  • All content x
Clear All

In 2005–2008 virulence of the wheat leaf rust population was studied on Thatcher near-isogenic lines with Lr1, Lr2a, Lr2b, Lr2c, Lr3a, Lr9, Lr10, Lr11, Lr15, Lr17, Lr19, Lr21, Lr23, Lr24, Lr26 and Lr28 . Samples of leaf rust were obtained from different parts of the Czech Republic. A total of 233 wheat leaf rust isolates were analyzed. Resistance gene Lr9 was effective to all tested isolates as in the four previous years. Virulence to Lr19 (0.8% of the analysed isolates) was found. Gene Lr24 conditioned resistance to almost all collections and a lower frequency of virulence was also observed on Lr2a and Lr28 . Twenty-six winter wheat cultivars, seven spring wheat cultivars and seven winter triticale cultivars registered in 2005–2008 were tested with 7 leaf rust isolates. Winter wheat cultivars Biscay, Mulan and Orlando were resistant to all isolates and were also resistant in field trials.

Restricted access

In 2013–2015 virulence in the wheat leaf rust population was evaluated on 17 Thatcher near-isogenic lines with leaf rust resistance genes. A total of 110 wheat leaf rust isolates were analyzed. Resistance genes Lr9 and Lr19 were effective to all tested isolates. Genes Lr24 and Lr28 conditioned resistance to 92% of the tested rust isolates. Thirty-seven winter wheat cultivars registered in Slovakia were analyzed for the presence of Lr10, Lr24, Lr26, Lr34 and Lr37 using tightly linked molecular markers. Gene Lr37 was the most common in the tested cultivars. Leaf rust resistance was also tested in 13 wheat cultivars at the seedling stage with representative pathotypes of leaf rust.

Restricted access

Two new pathotypes of Puccinia triticina , 121R60-1 and 377R60-1 the latter virulent on Lr28 , are described for the first time. Both the pathotypes are designated as MHTTS as per North American system of pathotype identification. Pathotype 377R60-1 appears to be the result of a single step mutation for virulence to Lr28 in pathotype 121R60-1. Both pathotypes appear closely related to the most prevalent virulent pathotype 121R63-1(THTTS). The avirulence/virulence profile, resistance sources and their possible relationship with other pathotypes are discussed. Lr28 is now included as one of the differentials for the identification of leaf rust pathotypes.

Restricted access

A leaf rust resistance gene transferred from the tetraploid wheat Triticum timopheevii (Zhuk.) Zhuk. (genomic composition: A t A t GG) into common wheat Triticum aestivum L. conditioned resistance at the seedling and adult plant stages in the introgression line ‘line 842-2’. To determine chromosome location and to map the resistance gene an F 2 population from a cross between ‘line 842-2’ and susceptible wheat cultivar ‘Skala’ was developed and screened against leaf rust pathotype 77 ( Puccinia triticina Erikss.). Microsatellite markers detected introgressions of the T. timopheevii genome on chromosomes 1A, 2A, 2B, 5B and 6B of ‘line 842-2’. Linkage analysis revealed an association between leaf rust resistance and microsatellite markers located on chromosome 5B. The markers Xgwm880 and Xgwm1257 were closely linked to the resistance gene with genetic distances of 7.7 cM and 10.4 cM, respectively. Infection type tests with three leaf rust isolates resulted in different patterns of infection types of ‘line 842-2’ and ‘Thatcher’ near-isogenic line with the Lr18 gene on chromosome 5B. The data corroborated the hypothesis of the diversity of the resistance coming from T. timopheevii . The resistance gene of the introgression ‘line 842-2’ seems to be different than Lr18 and therefore it was designated LrTt2 .

Restricted access

Gupta, S., Saini, R.G., Gupta, A.K. 1995. Genetic analysis of resistance to leaf rust pathotypes in durum wheats PBW34 and DWL5023. Plant Breed. 114 :176–178. Gupta A.K. Genetic

Restricted access