Search Results

You are looking at 1 - 10 of 38 items for :

  • "lithosphere" x
  • Refine by Access: All Content x
Clear All

Geophysical methods are important tools for the investigation of the structure and geodynamic development of the lithosphere. The central and eastern parts of the Western Carpathians are bordered in the north by a thicker  and stronger lithosphere of the European platform (100-150  km), which is underthrust (about of 50 km) beneath the margin of the overriding Carpathian orogen. This thickening is interpreted as remnants of subducted slabs. In contrast, the “thin” lithosphere at the western margin of the Western Carpathians can be considered as a result of oblique collision along a deep-seated transform zone between the platform and orogenic lithosphere. Neo-Alpine “soft” collision and retreating subduction of this orogen can also be discovered by means of quantitative interpretation of observed gravity field. The crustal thickness in the Western Carpathians ranges among 27-35 km. The central Western Carpathians are characterized by thicker crust (30-55 km) in comparison with thinner crust (25-30 km) in the Pannonian Basin System. This feature is probably the result of the youngest lithosphere processes from the Middle Miocene. Rheological properties of the Western Carpathian lithosphere show that the mechanical strengths decrease within the whole lithosphere from the area of the European platform via the Western Carpathians to the Pannonian Basin. The most remarkable and important first-order tectonic structures (seismo-tectonic zones) in  the Western Carpathians are the zones of the Pieniny Klippen Belt, the Mur-Mürz-Leitha fault zone, the Čertovica fault zone and the Hurbanovo line. Map of neo-Alpine fault systems and neotectonic regions (blocks) of  Slovakia was defined.

Restricted access

In connection with the EURISGIC WP2 project the authors present those procedures which have been used to construct a map in cells on the electrical resistivity distribution in Europe at least till to the asthenosphere. The data are based on the deep magnetotelluric soundings published in the international literature. This map is the basis of the calculation of the induction risk endangering the electric network and communication systems.

Restricted access
Acta Geodaetica et Geophysica Hungarica
Authors: M. Bielik, Z. Alasonati-Tašárová, H. Zeyen, J. Dérerová, J. Afonso, and K. Csicsay

Our paper presents the general overview of the current geophysical results, which helps to improve the geophysical image and the lithospheric structure of the Carpathian-Pannonian Basin region. Two different geophysical methods have been applied for the study of the structure and composition of the lithosphere as well as for determination of the lithospheric thermal structure. Firstly, integrated 2D modeling of gravity, geoid, topography and surface heat flow data was performed. Secondly, based on the results of the CELEBRATION 2000 seismic experiment, a large-scale 3D lithospheric gravity model was developed. The resulting map of the lithospheric thickness shows important variations in lithospheric thickness across the chain as well as along strike of the Carpathian arc. The sediment stripped gravity map is characterized by minima in the Eastern Alps and Western Carpathians. The maxima are observed in the Pannonian Back-arc Basin system, Bohemian Massif, Fore-Sudetic Monocline, Bruno-Silesian unit (BSU), Lublin Trough and partly in the Holy Cross Mts. and Malopolska unit. The Western Carpathian gravity minimum is a result of the interference of two main gravity effects. The first one comes from the lowdensity sediments of the Outer Western Carpathians and Carpathian Foredeep. The second one is due to the thick low-density upper and middle crust, reaching up to 25 km. The sediment stripped anomaly in the Pannonian Back-arc Basin system is characterized by gravity high that is a result of the gravity effect of the anomalously shallow Moho. The most dominant feature of the complete stripped gravity map is the abrupt change of the positive anomalies along the Pieniny Klippen Belt zone. The complete residual anomaly of the Pannonian Back-arc Basin system and the Western Carpathian orogen is characterized by a long-wavelength gravity low. The lowest values are associated with the thick low-density upper and middle crust of the Inner Western Carpathians. The European Platform is characterized by significantly denser crust with respect to the less dense crust of the microplates ALCAPA and Tisza-Dacia. That is why we suggest that the European platform represents consolidated, while the Carpathian-Pannonian Basin region un-consolidated crust.

Restricted access

This paper illustrates the application of multidisciplinary data analysis to the Carpathian-Pannonian Region and on the basis of geodetical data presents verification of a tectonic model of the Carpathian-Pannonian lithosphere with impact on the possible risk and activity of the geodynamic and kinematical zones in consequence of the post-subduction processes. This approach and analyses can be used for the analyses any Carpathian area from the point of view of the recent movements tendencies.All available mentioned geodata were verified and unified on the basis of the same scale and in the Western Carpathians on the remote sensing data, too.Independent GPS epoch-wise observing campaigns took place in several regions and the whole territory is now covered by tens of permanent stations. The long-term observational series from permanent stations generally yield reliable site velocities, however, distribution of such stations is not dense enough to provide velocity field with sufficient resolution all over the monitored region.In the paper we also shortly describe velocity fields available from various national and regional GPS geo-kinematics projects. The heterogeneous velocity fields have been homogenized and used for construction of the intraplate GPS velocities in Central and South-East Europe and their interpretation, focusing on the chosen active zone. As one of most important we consider — so called — “rebounding area” in East Carpathians. The proposed interpretation and solution enable to consider new view on the Pliocene to recent period.

Restricted access

is a result of the closure of the southern Neotethys, located between the Iranian and Arabian Plates ( Alavi 1994 ; Talbot and Alavi 1996 ; Stampfli and Borel 2002 ; Casini et al. 2011 ). Ophiolites, which are Neotethys oceanic lithosphere remnants

Open access
Scientometrics
Authors: Xingjian Liu, F. Benjamin Zhan, Song Hong, Beibei Niu, and Yaolin Liu

,505 16.96 Lithosphere 247 9 324 10 369 14 354

Restricted access

The geologic units presently occurring to the south of the Pannonian Basin are fragments of Eurasia in the east (Moesian Plate), of Gondwana in the southwest (northern part of Adria), terranes docked to them prior to the Permian, as well as relics of oceanic lithosphere that was located between them. Since the Permian these units gradually drifted northward in a steady approach and finally collided, closing the Vardar Ocean, as well as the oceanic realms between them.

Restricted access

Abstract  

Soil samples collected at the Indian Antarctic station Maitree, situated at the Schirmachar Oasis and belonging to the East Antarctic charnockite provinces have been analysed to determine trace uranium concentrations. The fission track technique using Makrofol-KG as the track detector was used for the analyses. Finely powdered samples and pellets were irradiated with thermal neutrons from a nuclear reactor. Uranium concentrations were obtained from the tracks of the detector. Uranium concentrations were found to vary from 0.036 to 0.364 ppm in the samples investigated. The low levels of uranium indicate the absence of human intervention with the lithosphere in this region.

Restricted access

Abstract  

Basic aspects of pollution and the role of analytical chemistry in environmental monitoring are highlighted and exemplified, with emphasis on trace elements. Sources and pathways of natural and especially man-made polluting substances as well as physico-chemical characteristics are given. Attention is paid to adequate sampling in various compartments of the environment comprising both lithosphere and biosphere. Trace analysis is dealt with using a variety of analytical techniques, including criteria for choice of suited techniques, as well as aspects of analytical quality assurance and control. Finally, some data on trace elements levels in soil and water samples from India are presented.

Restricted access

We present a semi-analytical solution for 2D forward modelling of viscoelastic relaxation in a spherical earth model with a nested axisymmetric craton. The present semi-analytical approach provides a model response against which more general numerical algorithms can be validated.  Numerically, we model the impact of a high-viscosity craton located below the lithosphere in Fennoscandia on surface vertical and horizontal displacements. In agreement with previous results, we show that a high-viscosity region in the upper mantle can influence surface vertical displacements by the order of 10 percent in magnitude. This effect is much greater for surface horizontal displacements and may change completely the pattern of surface movements.

Restricted access