Search Results
Kinetic analysis of thermal decomposition of magnesite
Influence of generated defects and their annealing
The excess enthalpy of magnesite accumulated by vibration grinding at low specific grinding energy consumption is due predominantly to an increase in specific surface area; at higher energy supply, it is caused by changes in the X-ray amorphous phase content, and when the supplied energy exceeds ca 2000 kJ kg−1 it is a result of the generation of other kinds of defects. The generated defects are relatively stable below 800 K and are the reason for a broad range of distribution of local molar Gibbs energies. Thus, at low temperatures only the ‘active’ portion of samples is able to decompose. Defects relax above ca 800 K, with rates comparable with the rate of decomposition itself. Accordingly, the efficiency of mechanical activation is impressive only below this temperature.
Introduction With the reserves, production, and export volume ranking the first in the world, Magnesite (MgCO 3 ) is a mineral resources advantage in China [ 1 ]. It is a main raw material in magnesium industry and refractory
Members of the siderite-magnesite series of carbonates have been investigated in nitrogen using differential scanning calorimetry. The mineral specimens contained between 0.3–0.95 mole fraction iron. Decomposition temperatures decreased markedly with increasing Fe substitution. Enthalpies of decomposition showed a linear dependence upon the degree of Fe and Fe + Mn substitution. The fit (R 2=0.995) in the case of Fe + Mn suggested that DSC can be used to distinguish members of the series. Decomposition products consisted of substituted iron oxides in most cases.
Abstract
INAA with 14 MeV neutrons is used for the determination of silicon in products of the magnesite plant and in the emitted dust. The products contain 1.3–1.7% Si. The average concentration in flue-dust is 2.5% Si.
TG, DTG and DTA curves of magnesite are dependent on procedural variables, especially sample mass, heating rate and partial pressure of carbon dioxide, in a similar manner to those of calcite [1], although the magnitude of the effect is less for magnesite. The first stage of the decomposition of dolomite varies with increasing partial pressure of carbon dioxide in an anomalous manner and hence the effects of these procedural variables (except heating rate) are not similar to those observed for magnesite and calcite. The second stage of the decomposition of dolomite is, however, strongly dependent on these procedural variables and behaves in a manner that would be predicted for a sample of calcite diluted with magnesia. A 1∶1 molar mixture of magnesite and calcite also behaves as would be predicted from the behaviour of the single carbonates but differently from that of dolomite.
Abstract
An industrial raw material taken from Sivrihisar (Eskişehir, Turkey) region was heat-treated at different temperatures in the range of 100–1000�C for 2 h. The volumetric percentage of the particles having a diameter below 2 μm after staying in an aqueous suspension of the material was determined as 67% by the particle size distribution analysis. The mineralogical composition of the material was obtained as mass% of 32% palygorskite, 10% metahalloysite, 35% magnesite, 20% dolomite and 3% interparticle water by using the acid treatment, X-ray diffraction and thermal analysis (TG, DTA) data. The temperature ranges were determined for the endothermic dehydrations for the interparticle water as 25–140�C, for the zeolitic water as 140–320�C, and for the bound water as 320–480�C, in the palygorskite. The temperature range for the endothermic dehydroxylation and exothermic recrystalization of the palygorskite is 780–840�C. The temperature range for the endothermic dehydroxylation of the metahalloysite and calcinations of magnesite are coincided at 480–600�C. Dolomite calcined in the temperature range of 600–1000�C by two steps. The zig-zag changes in the specific surface area (S/m2 g−1) and specific micro and mesopore volume (V/cm3 g−1) as the temperature increases were discussed according to the dehydrations in the palygorkskite, dehydroxylation of palygorskite and metahalloysite, and calcinations in magnesite and dolomite.
Abstract
The reactivity of MgO obtained from calcination of magnesium carbonate at different temperatures has been investigated by means of hydration in a constant relative humidity environment at 40°C for periods up to 24 days. Natural magnesite and AR grade basic MgCO3 calcined in the range of 500–1000°C was characterised in terms of surface area, crystallite size, morphology, and hydration rate. It was found that the hydration rate is dependent on the surface area and crystallite size where temperature was the main variable affecting them. The most reactive MgO was produced at the lowest calcination temperature with the highest surface area and the smallest crystallite size. The basic MgO specimens showed higher degree of hydration compared to the natural MgO specimens due to the smaller surface area and larger crystallite size. The low MgO content of the starting natural magnesite is also attributable to the lower reactivity. This preliminary study serves as a mean to investigate potential utilisation of reactive MgO as a supplementary cementitious material in eco-friendly cements.
Abstract
The sorption behavior of Ba2+, Co2+ and Zn2+ ions on alumina, kaolinite and magnesite have been investigated using the batch method.60Co,65Zn and133Ba were used as radiotracers. The mineral samples were separated into different particle size fractions using an Andreasen Pipette. The particle sizes used in the sorption experiments were all less than 38 m. Synthetic groundwaters were used which had compositions similar to those from the regions where the minerals were recovered. The samples were shaken with a lateral shaker at 190 rpm, the phases were separated by centrifuging and adioactivity counted using a NaI(Tl) detector. Kinetic studies indicated that sorption onto the minerals took place in two stages with the slower process dominating. The highest sorption was observed on alumina. Both Freundlich and Dubinin-Radushkevich type isotherms were found to describe the sorption process well. The distribution ratio,R d was found to be a function of the liquid volume to solid mass ratio. TheR d 's for sorption on binary mixtures of minerals were experimentally determined and compared with those predicted fromR d values of each individual mineral.