Search Results

You are looking at 1 - 2 of 2 items for :

  • "multiple Fourier coefficients" x
  • All content x
Clear All


For a Lebesgue integrable complex-valued function f defined over the n-dimensional torus
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}^n$$ \end{document}
:= [0, 2π)n, let
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\hat f$$ \end{document}
(k) denote the Fourier coefficient of f, where k = (k 1, … k n) ∈ ℤn. In this paper, defining the notion of bounded p-variation (p ≧ 1) for a function from [0, 2π]n to ℜ in two diffierent ways, the order of magnitude of Fourier coefficients of such functions is studied. As far as the order of magnitude is concerned, our results with p = 1 give the results of Móricz [5] and Fülöp and Móricz [3].
Restricted access