Search Results

You are looking at 1 - 1 of 1 items for :

  • "nanotube junctions" x
Clear All
Authors: Robert Vajtai, Sujit K. Biswas, Binqing Wei, Gouwen Meng, Yung Joon Jung and Pulickel M. Ajayan

Single and multiwalled carbon nanotubes have attracted significant interest due to their one-dimensional structure and unique electrical and mechanical properties. Among the wide variety of their potential applications most importantly they offer potential to serve as building blocks for future electronic device architectures [1, 2, 3, 4, 5, 6]. Carbon nanotubes may serve as active or passive electronic elements; and as passive elements they may serve as interconnects both on short and long ranges [7, 8]. The most essential prerequisite for realizing CNT architectures is to be able to grow nanotubes at controlled sites, in predetermined orientations and to form interconnections. Significant progresses in growing aligned carbon nanotube films have been made recently with a combined approach of the floating catalyst method using pre-patterned templates and chemical vapor deposition (CVD) [9, 10, 11, 12]. Recently we summarized our work on growing architectures of carbon nanotubes, which might be integrated into microelectronic circuits [13]. While the predefined growth of the above mentioned large nanotube structures is important and receives a lot of attention characterization of the product also deserves similarly high attention being a key for future applications and giving the real importance and purpose of the growth efforts. In this paper, we report some of our works, which are directed towards electrical tests on CNTs, namely high current carrying capacity; vertically organized multiwalled nanotubes showing the possible usage of highly ordered and well-shaped tubes; and characterization of singlewalled nanotube junctions.

Restricted access