Search Results

You are looking at 1 - 1 of 1 items for :

  • "optimal blade width" x
  • Refine by Access: All Content x
Clear All

In the present paper, CFD simulation is used to perform the numerical calculation of behaviours of multi-blade drag typed VAWT. The sliding grid technology, FLUENT software and PISO algorithm are involved. By taking wind power efficiency C p as the goal function, the optimal situations of multi-blade drag typed VAWT with 4 and 6 blades are conducted by CFD simulation. In this investigation, the variable parameters include the rotation rate of wind-mill ω, the blade installation angle θ and the blade width d. The results show that: the optimal working conditions for the 4-blade wind mill at the inlet wind speed 8 m/s are ω = 18 r/ min, θ = 28°, and d = 0.83 m, which induces an optimal wind power efficiency rate C p = 27.127%; the optimal working conditions for the 6-blade wind mill at the inlet wind speed 8 m/s are ω = 18 r/min, θ = 27°, and d = 0.67 m, which leads to an optimal wind power efficiency rate C p = 30.404%.

Open access