Search Results
Some new organotin(IV) complexes with kojic acid and maltol
Synthesis, characterization and thermal studies
Abstract
Organotin(IV) complexes of kojic acid and maltol of the type R3Sn(L) and R2Sn(L)Cl [R=C6H5CH2-,p-ClC6H4CH2-; HL=kojic acid, maltol] have been synthesized in anhydrous THF. They were characterized by UV, IR,1H NMR, and mass spectral studies. Their activityvs. E. coli, S. aureus and P. pyocyanea bacterial strains have been studied and the general order of activity is S. auresu>P. pyocyanea>E. coli. In all the complexes, the ligand acts as bidentate, forming a five membered chelate ring. All the complexes are 1∶1 metal ligand complexes. Various thermodynamic parameters have been calculated for the first two decomposition steps using TG/DTA/DSC curves. (p-ClC6H4CH2)3Sn(L) complexes have the minimum and (C6H5CH2)2Sn(L)Cl complexes have the maximum activation energy.
Abstract
New (radio)halogen derivatives of 1-allylterguride have been prepared by method of destannylation-halogenation. 1-Alylterguride shows relatively high binding affinity, which can be used in the case of its radiolabeled derivatives with imaging methods like PET or SPET in studies of properties of receptor's binding places and ligand affinity. The (radio)halogenation was performed via organotin precursors: 1-tributylstannyl-3-chlorprop-1-ene and 2-tributylstannyl-3-chloroprop-1-ene, which were prepared from appropriate alcohols. Linkers of the tin group were used for alkylation of N1 of terguride both under microwave irradiation and under conventional heating. In the last step (destannylation-halogenation), fluoro-, bromo- and iododerivatives as well as 125I iodo- and 82Br bromoderivatives of 1-allylterguride were obtained.
Abstract
Fourteen complexes of di-n-butyltin(IV)2+ cations with flavonoid glycosides (rutin, hesperidin, 2′,4′,3-trihydroxy-5′,4-dimetoxychalkone 4-rutinoside) and flavonoid aglycones (quercetin, morin, hesperitin and sorte flavones) were prepared. The composition of the complexes was determined by standard analytical methods. The results showed that complexes containing diorganotin(IV)2+ moiety and the ligand in 1∶1, 2∶1 or 3∶1 ratio are formed. The FTIR spectra were consistent with the presence of Sn-O (phenol or carbohydrate) vibration in the compounds. The structure of the complexes was measured by Mössbauer spectroscopy. Comparison of the experimental quadrupole splitting with those calculated on the basis of partial quadrupole splitting concept revealed that the complexes are of four types: with the central tin atoms surrounded by donor atoms in a purely trigonal-bipyramidal, octahedral+trigonal-bipyramidal, trigonal-bipyramidal+tetrahedral and octahedral+tetrahedral arrangement. This procedure also distinguished between the different structural isomers of both trigonal-bipyramidal and octahedral complexes. Conclusions could therefore be drawn on the factors determining which of the isomers are formed in the systems. The Mössbauer parameters obtained for organotin(IV)-flavonoid complexes were compared with those measured for organotin(IV)-carbohydrate complexes.
Abstract
A number of complexes of ligands containing {O,N,S} donor atoms (2,3,4,6-tetra-O-acetyl-b-D-thioglucopyranoside, 1-thio-b-D-glucose, 2-aminomercaptopurine, 4-amino-2-mercaptopyrimidine and 2-amino-6-mercaptopurine-9-D-riboside) with di-n-butyltin(IV) oxide, diphenyltin(IV) oxide, tribenzyltin(IV) chloride, and trimethyltin(IV) chloride were prepared in the solid state. It was found that the complexes contain the organotin(IV) moiety and the ligand in a ratio of 1:1 or 2:1. The FTIR and Raman spectra clearly demonstrated that the organotin(IV) moieties react with the {S} atom of the ligands, while di-n-butyltin(IV) oxide is coordinated to the deprotonated hydroxy group. In several cases, the basic part of the ligands also participates in complex formation. Comparison of the experimental Mössbauer D values with those calculated on the basis of the pqs concept revealed that the organotin(IV) moiety has trigonal-bipyramidal geometry, and in certain cases tetrahedral geometry too. Some of the complexes contain the organotin(IV) cation in two different surroundings.
Abstract
The complexes of four oxime analogues of amino acids and peptides (containing {O,N} donor atoms) with Bu2SnO were prepared, with ligand to metal ratios of 1 : 1 or 1 : 2, by two different methods. The FT-IR and Raman spectra clearly demonstrated that the organotin(IV) moieties react with the {O,N} atoms of the ligands. It was found that in most cases the -COO- group is coordinated to the central metal ion in a monodentate mode. Complex formation was accompanied by a rearrangement of the hydrogen-bonding network existing in the ligands. The complexes probably have monomeric structures. Comparison of the experimental Mössbauer values with those calculated on the basis of the point charge model (pqs) formalism revealed that the organotin(IV) moiety has octahedral (oct) geometry, and in certain cases trigonal-bipyramidal (tbp) geometry too.
Abstract
The complexes of six organic carboxylic acids (containing {O,O} donor atoms) with Bu2Sn(IV)2+ and Ph3Sn(IV)+ with ligand to metal ratios of 1 : 1 and 1 : 2, were prepared by two different methods. The FtIR and Raman spectra clearly demonstrated that the organotin(IV) moieties react with the {O,O} atoms of the ligands. It was found that in most cases the -COO-group was chelated to the central metal ions, but monodentate coordination was also sometimes observed. Complex formation was accompanied by a rearrangement of the hydrogen-bonding network existing in the ligands. The complexes probably have polymeric structures. Comparison of the experimental Mössbauer D values with those calculated on the basis of the point charge model formalism revealed that the organotin(IV) moiety has a trigonal-bipyramidal (tbp) geometry, and in certain cases a tetrahedral (tetr) geometry too. Finally, the local structure of the maleic acid complex formed with Bu2Sn(IV)2+ was determined by an EXAFS method.
Abstract
The complexes of piperidine dithiocarbamate, 2-aminopyridine dithiocarbamate and organotin(IV) of the type R3Sn(L1), R2Sn(L1)2, R3Sn(L2), R2Sn(L2)2, [R=C6H5CH2 (benzyl), p-ClC6H4CH2 (p-chlorobenzyl), L 1=sodium piperidine dithiocarbamate and L 2=sodium 2-aminopyridine dithiocarbamate] have been synthesised and characterised by spectral studies (IR, UV, 1H NMR). Thermogravimetric (TG) and differential thermal analytical (DTA) studies have beeen carried out for these complexes and from the TG curves, the order and apparent activation energy for the thermal decomposition reactions have been elucidated. The various thermal studies have been correlated with some structural aspects of the complexes concerned. From DTA curves, the heat of reaction has been calculated.
Abstract
Complexes of adenosine and related compounds (adenosine-5’-monophosphate, adenosine-5’-triphosphate and pyridoxal-5-phosphate) with Bu2SnO and/or BuSnCl2 were prepared in the solid state. The compositions of the complexes were determined by standard analytical methods. It was found that the complexes contain the organotin(IV) moiety and the ligand in a ratio of 1:1. The FT-IR spectra demonstrated that Bu2SnO reacts with the D-ribose moiety of the ligands, while Bu2SnCl2 is coordinated to the deprotonated phosphate group. The basic part of the ligands does not participate directly in complex formation. Comparison of the experimental Mössbauer Δ (quadrupole splitting) values with those calculated on the basis of the pqs concept revealed that the organotin(IV) moiety has Tbp and in some cases also Th geometry. The adenosine complex contains the organotin(IV) cation in two different surroundings (Tbp and Th). The local structures of the complexes were determined by means of EXAFS measurements. At the same time a number of organotin(IV) complexes containing different organo moieties of calf thymus DNA were also prepared. Similarly as above, EXAFS data were obtained for these compounds and analyzed by using multishell models up to 300 pm. These results are the first structural data (bond lengths) on complexes formed with organotin(IV)-DNA and related compounds.
Abstract
The thermal decomposition using TG, DTG and DTA, of seven complexes of the types Bu2SnL(I) and Bu2SnL(II) (where H2L(I)=Schiff base derived from acetylacetone and glycine [H2L-1(I)] or L-leucine [H2L-4(I)] or methionine [H2L-5(I)] or phenylglycine [H2L-6(I)]; H2L(II)=Schiff base derived from o-hydroxynaphthaldehyde and β-alanine [H2L-2(II)] or DL-valine [H2L-3(II)] or L-leucine [H2L-4(II)] is shown to fall into one of two categories, viz, (1) Bu2SnL(I) complexes that decompose without melting to give SnO as the final tin containing product, (2) Bu2SnL(II) complexes that melt and then decompose to give SnO. Mathematical analysis of TG data using Coats-Redfern equation, Horowitz-Metzger equation, and Fuoss method shows that the first order kinetics is applicable in all the complexes except Bu2SnL-2(II). Kinetic parameters such as the energy and entropy of activation and pre-exponential factor are reported.
Abstract
Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10-30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 °C was in the ranges of 99.9% to 99.99%, except for 300 °C. The influence of the long-term weathering and the poisoning with NO2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100).