Search Results

You are looking at 1 - 10 of 169 items for :

  • "phase separation" x
  • Refine by Access: All Content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors: K. Six, Ch. Leuner, J. Dressman, G. Verreck, J. Peeters, N. Blaton, P. Augustijns, R. Kinget, and G. Van den Mooter
Restricted access

Abstract  

The phase behaviour of thermoplastic polymer-dispersed liquid crystal system is studied with particular emphasis on the various transitions that occur within the system. The extent of plasticization of the polymer(polymethyl methacrylate) by the low molecular weight liquid crystal(E7) along with the several transitions of theLC(Liquid Crystal) are determined by modulated DSC. Optical microscopy was used to construct the temperature versus composition phase diagram. Our study indicates the existence of a limiting temperature of 40°C around which the PMMA matrix turns glassy irrespective of the initial composition within the phase separated region, suggesting the intersection of the glass transition curve with the coexistence curve. A slight depression of theN-I(Nematic to Isotropic) transition of theLC is observed with increasing composition of PMMA whereas theS-M(Smectic to Nematic) transition and theT g (Glass transition temperature) of theLC remain unaffected. The one phase mixture remains isotropic until phase separation at a lower temperature where theLC rich domains become nematic. The growth ofLC rich domains is studied as a function of temperature and time.

Restricted access

Abstract  

The thermally induced phase separation behavior of hydrogen bonded polymer blends, poly(n-hexyl methacrylate) (PHMA) blended with poly(styrene-co-vinyl phenol) (STVPh) random copolymers having various vinyl phenol contents, was studied by temperature modulated differential scanning calorimetry (TMDSC).The enthalpy of phase separation was determined to be about 0.5 cal g–1 for one of the blends. A phase diagram was constructed from the TMDSC data for one of the blends. The kinetics of phase separation was studied by determining the phase compositions from the glass transition temperatures of quenched samples after phase separation. Subsequently, the phase separated samples were annealed at temperatures below the phase boundary to observe the return to the homogeneous state.

Restricted access

Abstract  

A method for determination of the composition of binary mixtures of a metal or radionuclide species by optimized repeated two-phase separations (SORTS) was proposed and theoretically substantiated. Its principle consists in repeated equilibration of two immiscible phases, one being the original liquid or solid matrix with minimal adjustment of its composition and varying the phase ratio (separation stage cut) as the optimized parameter. The batch separation technique may consist in the repeated solvent extraction or aqueous biphasic distribution, or in the replicate equilibration with solvent or leaching solution. Results of SORTS can be presented e.g. by Tukey box diagrams as the characteristic fingerprints of original species composition.

Restricted access

Abstract  

Diglycidyl ether of bisfenol-A (DGEBA)/polybenzyl methacrylate (PBzMA) blends cured with 4,4’-diaminodiphenylmethane (DDM) were studied. Miscibility, phase separation, cure kinetics and morphology were investigated through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Non-reactive DGEBA/PBzMA blends are miscible over the whole composition range. The addition of PBzMA to the reactive (DGEBA+DDM) mixture slows down the curing rate, although the reaction mechanism remains autocatalytic. On curing, initially miscible (DGEBA+DDM)/PBzMA blends phase separate, arising two glass transition temperatures that correspond to a PBzMA-rich phase and to epoxy network. Cured epoxy/PBzMA blends present different morphologies as a function of the PBzMA content.

Restricted access

Abstract  

The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single T g, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.

Restricted access

Abstract  

Non-isothermal crystallization kinetics of the ethylene–acrylic acid copolymer (EAA) in diluents during thermally induced phase separation (TIPS) process was investigated via differential scanning calorimetry (DSC). Dioctyl phthalate (DOP), diphenyl ester (DPE), and peanut oil were used as diluents. Kinetic models, such as Jeziorny theory, Ozawa theory, and Mo’s approach, were utilized for description. The effective activation energy of EAA component in mixture was calculated by Friedman’s method. In the results, the Jeziorny theory and Mo’s approach could obtain good linear fitting relationship with the primary crystallization behavior of EAA, but the Ozawa theory failed to get a suitable result. The homogeneous nucleation of EAA proceeded at the end of liquid–liquid phase separation, while the non-isothermal crystallization developed within a solid–liquid phase separation environment. In the mixtures, the molecular weight, polar groups, and conformation of the diluent molecules would affect the nucleation of EAA, and its growth rate. Comparing with the non-isothermal crystallization of neat EAA, EAA in diluents obtained a higher Avrami index n, and comparatively lower crystallization rate. Peanut oil facilitated the homogeneous nucleation of EAA, leading to a higher melting peak temperature of EAA in the subsequent melting endotherms. The largest EAA’s Avrami index obtained in peanut oil also indicated a higher crystal growth dimensional geometry. The crystallization rate and crystallinity of EAA during the non-isothermal process decreased in the sequence: EAA/DPE > EAA/DOP > EAA/peanut oil.

Restricted access

Phase separation process is influenced by operational factors that can hardly be controlled. This paper demonstrates the results of a series of experiments aiming to solve these problems using polyvinyl-alcohol - poly-acrylic acid copolymer hydrogel micro-carrier for the adherence of microorganisms to achieve better settling properties of the biomass. The nitrification process was examined using hydrogel micro-carriers and conventional activated sludge flocks. The sedimentation properties of the two systems were compared indifferent conditions. Results show that the sedimentation properties of the immobilized system were more favorable than activated sludge flocks.

Restricted access

Abstract  

Electrochemical measurements and Mössbauer spectroscopy were used to study a rapidly quenched Ni80 57Fe1P19 amorphous alloy solution treated between 920 and 1500 °C. Different short range orderings were shown in amorphous alloys solution treated at different temperatures. This finding can be associated with phase separation occurring in the liquid state. This phase separation can be inherited in slightly relaxed amorphous state.

Restricted access

The effect of sulfadiazine on dipalmitoylphosphatidylethanolamin-dipalmitoylphosphatidylglycerol-water (DPPE-DPPG/water, 20 mass/mass%, with 0.2 DPPG/DPPE+DPPG molar ratio) vesicles considered as a model system of the cytoplasmic bacterial membranes was studied using DSC and freeze-fracture methods. The sulfadiazine/lipid molar ratio was varied from 10-3 up to 1. It was found that the DPPE-DPPG/water system is drastically affected by the sulfadiazine, but there is no concentration effect in a wide range of sulfadiazine/lipid molar ratios from 10-2 up to 2·10-1. The DSC and freeze-fracture methods reveal that a homogeneous incorporation of the sulfadiazine molecules occurs in the liquid crystalline phase while in the gel phase separation appears. The different local structures can be classified into two different types: vesicle-like and block-type. Although the surface morphology of the domains of both types shows lamellar arrangement, the blocks are constituted from closely packed long units.

Restricted access