Search Results

You are looking at 1 - 10 of 60 items for :

  • "poly(vinyl chloride)" x
  • All content x
Clear All

Abstract  

Blends of poly(vinyl chloride) and a polyurethane elastomer were investigated by DSC and tensile testing. Up to 30 wt% single glass transition was found. It was concluded that the polyurethane forms partly a true blend and is partly disperged in the continuous blend phase.

Restricted access

Abstract  

Pyrolytic process has a promising potential for the environmentally friendly upgrading of lignocellulosic materials and plastic waste. The co-pyrolysis of olive residue and poly(vinyl chloride) was investigated under nitrogen atmosphere by dynamic thermogravimetric analysis in the temperature range of 300–975 K. Two main stages of mass loss have been evidenced by TG analysis. The first occurs in the temperature range of 420–684 K, and the second occurs at 631–840 K. This research was focused on the interaction between olive residue and poly(vinyl chloride) during the pyrolysis process. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. It was found that reactivity of olive residue was increased in olive residue/PVC mixture. In addition, a kinetic analysis was performed to fit thermogravimetric data, the mixture is considered as multistage process. A reasonable fit to the experimental data was obtained for all materials and their mixture by isoconversional Friedman method.

Restricted access

Abstract  

The thermooxidative degradation of poly(vinyl chloride) (PVC), chlorinated polyethylene (CPE) and PVC/CPE blend 50/50 was investigated by means of dynamic and isothermal thermogravimetric analysis in the flowing atmosphere of air. To estimate the thermooxidative stability of the samples the characteristics of thermogravimetric (TG) curves were used. Kinetic parameters (the apparent activation energy E and preexponential factor Z) were calculated after isoconversional method for the first stage of dynamic degradation where dehydrochlorination (DHCl) of PVC and/or CPE is the main degradation reaction. Despite the chemical resemblance, the degradation mechanisms of CPE and PVC are different, as a consequence of differences in microregularity of the corresponding polymer chains. The addition of Ca/Zn carboxylates as well as the ratio of Ca and Zn carboxylates have considerably different influence on the investigated polymers.

Restricted access

natural fibres [ 6 ]. The matrix selected in this study was poly(vinyl chloride) (PVC). It is one of the most well-known and the least expensive thermoplastic polymers. This thermoplastic is used in a broad range of applications, and its use has

Restricted access

Introduction For many years, poly(vinyl chloride) (PVC) has been one of the most important technical polymers that have wide applicability specially in medicine due to its easy modification by various additives, such as

Restricted access

chloride (PVC) [ 10 – 14 ]. Among these, the markets for wood flour-poly(vinyl chloride) composites (WF-PVC) are increasing dramatically, with a growth perspective of 200% from 2002 to 2010[ 1 ]. They are now typically used in building construction

Restricted access

Abstract  

A series of blends of poly(vinyl chloride) (PVC) and polyaniline (PANI) was prepared by solution casting and investigated by methods of thermal analysis, namely thermogravimetric analysis (TG), coupled with Fourier transform infrared spectroscopy (TG-FT/IR) and differential scanning calorimetry (DSC). It was found that the thermal stability of this polymer system depends on the composition of blend; the main product of prevailing PVC decomposition process — hydrogen chloride — seems to play specific role during degradation since it can react with PANI structures, characterized by different protonation degree.

Restricted access

Abstract  

Thermogravimetry coupled with Fourier transform infrared spectroscopy (TG/FT-IR) was used to investigate the stabilizing action of 3-(2,4-dibromophenylazo)-9-(2,3-epoxypropane)carbazole on the degradation of poly(vinyl chloride) (PVC). It was found that this secondary stabilizer increases the initial temperature of hydrogen chloride evolution (the main process responsible for PVC decomposition), thereby allowing its application for novel PVC systems with enhanced thermal stability. The application of TG/FT-IR technique for study of the thermal properties of polymeric materials offers additional characterization options in comparison with thermogravimetry, if used alone.

Restricted access

Summary A series of semi-interpenetrating polymer networks (semi-IPN) of polyurethane (PU) and poly(vinyl chloride) (PVC) has been obtained by prepolymer method and characterised by FTIR; morphological features were examined by SEM-EDS. It has been found that PVC spherical aggregates are dispersed in the PU matrix, but Cl atoms location indicates partial miscibility of both polymers at the interphase which is probably due to hydrogen bonding and/or dipole-dipole interactions. The PVC component influences the phase behaviour of PU’s hard segments, as evidenced by DSC results. Thermogravimetric analysis (TG) reveals a complex, multi-step decomposition process with the main mass loss at 503-693 K, while the DTG maxima are located between 540 and 602 K.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Vadim V. Krongauz, Yann-Per Lee, and Anthony Bourassa

Introduction Poly(vinyl chloride) (PVC) is used in construction, medical devices, electrical insulation, rain gear, upholstery, and other products. The degradation mechanism of PVC and other halogenated polymers exposed to high

Restricted access