Search Results

You are looking at 1 - 10 of 111 items for :

  • "polymer blends" x
  • All content x
Clear All

Knowledge of the heat of mixing is very important in order to evaluate the interaction parameter, according to the Patterson theory. In this work we illustrate the results regarding some polymer blends, based on poly(vinyl acetate) and some polyacrylates with different substituent groups. In this way it is possible to understand the effect of the lateral group hindrance, as it will be illustrated in the paper.

Restricted access

Abstract  

The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single T g, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.

Restricted access

Abstract  

Coal-tar pitch was modified by addition of polystyrene, poly(ethylene terephthalate), unsaturated polyester and coumarone-indene resin. The optimum conditions for production of homogeneous binary pitch-polymer blends containing 10% w/w of the polymer were established. Softening points, contents of toluene and quinoline-insoluble matters and rheological properties of the blends were determined. The yield of solid fraction in semi-coking the blends was also found. The effect of polymers on the coal-tar pitch blend properties was evaluated. Some pitch-polymer blends were then carbonized to carbon sorbents used for purification of water and wastewater.

Restricted access

Abstract  

DSC analysis of wax/polymer blends is carried out between 270 and 420 K. Calibration for melting point and enthalpy is normally carried out using indium (melting point 430 K), which is unsatisfactory for these materials. IUPAC organic standards covering this range tend to sublime and their onset temperatures are variable. Pure alkanes have similar thermal characteristics to wax/polymer blends and some have been well characterised by adiabatic calorimetry. They are being investigated as alternative secondary calibration standards to give more accurate thermal characterisation of wax/polymer blends. Also,n-triacontane can be used to check DSC resolution.

Restricted access

Abstract  

The thermally induced phase separation behavior of hydrogen bonded polymer blends, poly(n-hexyl methacrylate) (PHMA) blended with poly(styrene-co-vinyl phenol) (STVPh) random copolymers having various vinyl phenol contents, was studied by temperature modulated differential scanning calorimetry (TMDSC).The enthalpy of phase separation was determined to be about 0.5 cal g–1 for one of the blends. A phase diagram was constructed from the TMDSC data for one of the blends. The kinetics of phase separation was studied by determining the phase compositions from the glass transition temperatures of quenched samples after phase separation. Subsequently, the phase separated samples were annealed at temperatures below the phase boundary to observe the return to the homogeneous state.

Restricted access

Abstract  

The effects which an iron(III) based smoke suppressing compound have on the thermal stability of some acrylonitrile–butadiene–styrene/chlorinated poly(vinyl chloride) (ABS/CPVC) polymer blends have been investigated. Thermogravimetric analysis (TG) experiments have shown that there are three distinctive stages occurring during the thermal breakdown of these blends both when the iron compound is absent and present in the polymer formulations. The most important effect which the iron compound has when it is present in these blends is to modify the decomposition chemistry which takes place and the effect becomes more pronounced as the concentration of CPVC present in the blends increases. Other important effects are that the iron compound stabilises the blends so that mass loss is significantly reduced (by up to 50% in some cases) and the onset temperature of decomposition is raised. Flammability data generated during earlier work is supported by the TG results obtained in this work especially in the important area of smoke formation and suppression.

Restricted access

Abstract  

The structure-property relationships of thermoplastic polymer blends based on poly(ether-urethane) ionomer (PEUI) and ion-containing styrene-acrylic acid copolymer (S-co-AA(K)) have been investigated by using DMTA, DSC and TGA, as well as tensile tests. Convergence of the glass transition temperature (T g) values of the PEUI and the S-co-AA(K) components in the blends studied, as compared to the individual polymers, was found and explained by improving compatibility of the components due to increasing effective density of physical networks formed by ion-dipole and ion-ion interactions of ionic groups of the components. Character of E'=f(T) and E''=f(T) dependencies confirms the increase of the effective density of physical networks in the compositions studied compared to individual PEUI and S-co-AA(K). Improvement of end-use properties, i.e. thermal stability and tensile properties has been found for the PEUI/S-co-AA(K) compositions with lower content of S-co-AA(K) (i.e. <10 mass%) and explained by formation of additional network of intermolecular ionic bonds between the functional groups of PEUI and S-co-AA(K).

Restricted access

Abstract  

In the present study PVP/HPMC and PVP/Chitosan polymer blends were prepared by using the solvent evaporation technique. From DSC studies were revealed that both blends are completed miscible in the entire composition range since only one glass transition temperature was detected. Miscibility can be attributed to the strong interactions evolved between the carbonyl group of PVP, which acts as strong proton acceptor, with hydroxyl and amino-groups of HPMC and Chitosan, which are proton donors. Thus hydrogen bonds are easily formed, as was verified by FTIR, producing miscible blends. However, the extent of interactions depends from polymer composition and mainly from the ratio and the kind of reactive groups. In PVP/HPMC blends a negative variation of T g is recorded while in PVP/Chitosan the variation has a sigma form. The miscibility of these systems creates matrixes with completely different physical properties in order to use as effective drug carriers. PVP/HPMC blends can be used as pulsatile chronotherapeutics systems adjusting exactly the time of the drug release while PVP/Chitosan blends can be used to control the release profile of a poorly water soluble drug. In these blends HPMC and Chitosan respectively are the control factors for the corresponding applications.

Restricted access

Abstract  

A simple method of application of light heating modulated temperature DSC to a study of miscibility of polymer blends has been developed. In this method only the sample was measured and the standard materials were not used. The total heat flow, the complex heat capacity, the reversing and non-reversing heat flows were obtained as values measured from those quantities in hypothetical glassy state at T>Tg. The values of the hypothetical glassy state were calculated by extrapolation from T<Tg. The present method gives relative values but useful information can be obtained from the results. Some results from miscible and immiscible polymer blends are shown.

Restricted access

Abstract  

Two petroleum-derived aromatic hydrocarbon resins (HRs) were blended (1:1) with expanded polystyrene (EPS) waste and small amounts (up to 10 mass%) of poly(vinyl chloride) (PVC) to increase both the lustrous carbon (LC) yield and softening point of the blends without any deterioration of their rheological characteristics. The blends were prepared and tested for LC content, softening points, shear stress and apparent viscosity to check their applicability as LC precursors under industrial conditions. The properties of polystyrene compositions with bitumen fractions depend primarily on composition and viscosity of oil fraction. Additional modification by poly(vinyl chloride) improves the blends’ properties, like bright coal content, softening point and viscosity, and opens new possibilities of plastics’ wastes utilization.

Restricted access