Search Results

You are looking at 1 - 5 of 5 items for :

  • "prime submodule" x
Clear All

McCasland, R. and Moore, M. , Prime submodules, Commun. Algebra , 20 (1992), no. 6, 1803–1817. MR 1162609 Moore M. Prime submodules Commun. Algebra

Restricted access

Abstract  

Our main aim in this note, is a further generalization of a result due to D. D. Anderson, i.e., it is shown that if R is a commutative ring, and M a multiplication R-module, such that every prime ideal minimal over Ann (M) is finitely generated, then M contains only a finite number of minimal prime submodules. This immediately yields that if P is a projective ideal of R, such that every prime ideal minimal over Ann (P) is finitely generated, then P is finitely generated. Furthermore, it is established that if M is a multiplication R-module in which every minimal prime submodule is finitely generated, then R contains only a finite number of prime ideals minimal over Ann (M).

Restricted access

Abstract  

Let M be a left R-module. In this paper a generalization of the notion of m-system set of rings to modules is given. Then for a submodule N of M, we define

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{N}$$ \end{document}
:= { m ε M: every m-system containing m meets N}. It is shown that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{N}$$ \end{document}
is the intersection of all prime submodules of M containing N. We define radR(M) =
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt[p]{{(0)}}$$ \end{document}
. This is called Baer-McCoy radical or prime radical of M. It is shown that if M is an Artinian module over a PI-ring (or an FBN-ring) R, then M/radR(M) is a Noetherian R-module. Also, if M is a Noetherian module over a PI-ring (or an FBN-ring) R such that every prime submodule of M is virtually maximal, then M/radR(M) is an Artinian R-module. This yields if M is an Artinian module over a PI-ring R, then either radR(M) = M or radR(M) = ∩i=1 n
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}_i M$$ \end{document}
for some maximal ideals
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}_1 , \ldots ,\mathcal{P}_n$$ \end{document}
of R. Also, Baer’s lower nilradical of M [denoted by Nil* (R M)] is defined to be the set of all strongly nilpotent elements of M. It is shown that, for any projective R-module M, radR(M) = Nil*(R M) and, for any module M over a left Artinian ring R, radR(M) = Nil*(R M) = Rad(M) = Jac(R)M.

Restricted access
Authors: Dilel Pusat-Yilmaz and Patrick Smith
Restricted access

Summary  

Let M be a left R-module. Then a proper submodule P of M is called weakly prime submodule if for any ideals A and B of R and any submodule N of M such that ABN P, we have AN P or BN P. We define weakly prime radicals of modules and show that for Ore domains, the study of weakly prime radicals of general modules reduces to that of torsion modules. We determine the weakly prime radical of any module over a commutative domain R with dim (R) ≦ 1. Also, we show that over a commutative domain R with dim (R) ≦ 1, every semiprime submodule of any module is an intersection of weakly prime submodules. Localization of a module over a commutative ring preserves the weakly prime property. An R-module M is called semi-compatible if every weakly prime submodule of M is an intersection of prime submodules. Also, a ring R is called semi-compatible if every R-module is semi-compatible. It is shown that any projective module over a commutative ring is semi-compatible and that a commutative Noetherian ring R is semi-compatible if and only if for every prime ideal B of R, the ring R/\B is a Dedekind domain. Finally, we show that if R is a UFD such that the free R-module RR is a semi-compatible module, then R is a Bezout domain.

Restricted access