Search Results

You are looking at 1 - 10 of 62 items for :

  • "random walks" x
Clear All

Summary For the simple random walk in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Z}^2$ \end{document} we study those points which are visited an unusually large number of times, and provide a new proof of the Erdős-Taylor Conjecture describing the number of visits to the most visited point.

Restricted access

504 Miyazaki , H. and Tanaka , H., A theorem of Pitman type for simple random walks on Z d , Tokyo J. Math. , Vol. 12, No. 1. (1989), 235–240. MR 91a :60181

Restricted access

. , Földes , A. , Révész , P. and Shi , Z. , On the Excursions of twodimensional random walk and Wiener process , Bolyai Society Mathematical Studies , 9 43 – 58 ( 1999 ). [6

Restricted access

-Strassen approximation scheme , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 ( 1969 ), 321 – 332 . MR 41#1117 [7] K night , F. B. , On the random walk and Brownian

Restricted access

Csáki, E., Földes, A. and Révész, P. , Heavy points of a d-dimensional simple random walk, Statist. Probab. Lett. 76 (2006), 45–57. MR 2006k :60078

Restricted access

. Bibliografia [1] Csäki , E. , Révész , P. and Shi , Z. , Long excursions of a random walk , J. of Theoretical Probability 14 ( 2001 ), 821 – 844

Restricted access

Belkin, B. , A limit theorem for conditioned recurrent random walk attracted to a stable law, The Annals of Mathematical Statistics , 41 , No. 1, 146–163, 1970

Restricted access

. [5] C sörgő , M. , Random walking around financial mathematics, R évész , P. (ed.) et al., Random Walks: International workshop, Budapest, Hungary, 1998 . Bolyai Soc. Math. Stud

Restricted access

Abstract  

Let {X n d }n≥0be a uniform symmetric random walk on Zd, and Π(d) (a,b)={X n d ∈ Zd : a ≤ n ≤ b}. Suppose f(n) is an integer-valued function on n and increases to infinity as n↑∞, and let

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$E_n^{\left( d \right)} = \left\{ {\prod {^{\left( d \right)} } \left( {0,n} \right) \cap \prod {^{\left( d \right)} } \left( {n + f\left( n \right),\infty } \right) \ne \emptyset } \right\}$$ \end{document}
Estimates on the probability of the event
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$E_n^{\left( d \right)}$$ \end{document}
are obtained for
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$d \geqq 3$$ \end{document}
. As an application, a necessary and sufficient condition to ensure
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$P\left( {E_n^{\left( d \right)} ,{\text{i}}{\text{.o}}{\text{.}}} \right) = 0\quad {\text{or}}\quad {\text{1}}$$ \end{document}
is derived for
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$d \geqq 3$$ \end{document}
. These extend some results obtained by Erdős and Taylor about the self-intersections of the simple random walk on Zd.

Restricted access

Abstract  

We give a new proof of the central limit theorem for one dimensional symmetric random walk in random environment. The proof is quite elementary and natural. We show the convergence of the generators and from this we conclude the convergence of the process. We also investigate the hydrodynamic limit (HDL) of one dimensional symmetric simple exclusion in random environment and prove stochastic convergence of the scaled density field. The macroscopic behaviour of this field is given by a linear heat equation. The diffusion coefficient is the same as that of the corresponding random walk.

Restricted access