Search Results
Allan, A. C., Fluhr, R. (1997) Two sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9 , 1559–1572. Fluhr R
Biotic and abiotic stresses induce increased formation of reactive oxygen species (ROS) through distinct pathways: pathogen infections activate specific ROS-producing enzymes (i.e. NADPH oxidase, cell wall peroxidases), which results in accumulation of cellular or intercellular ROS, such as superoxide or hydrogen peroxide. Abiotic stresses, on the other hand, cause elevated ROS production principally through an impairment of photosynthetic and respiratory electron transport pathways. Also, these two types of stresses have diverse effects on the antioxidant system of the plant. Results of experiments studying the interaction of abiotic and biotic stresses largely depend on the degree of the applied abiotic stress treatment, the compatible or incompatible host-pathogen interaction and the timing of inoculation in relation to the timing of a preceding abiotic stress treatment.
It was shown that reactive oxygen species (ROS) produced by two chemical systems or applied directly can alter symptom expression and block pathogen growth in planta. This was demonstrated for diseases caused by four obligate and three facultative pathogens, respectively. When ROS were applied to the infected plants very early after inoculation, symptoms were fully suppressed. If application of ROS to leaves inoculated with biotrophic pathogens occurred 2-4 days after inoculation, hypersensitive type necrotic symptoms (HR) characteristic for resistant plants appeared in the leaves of susceptible cultivars instead of normal pustules containing mycelia. In the case of diseases caused by facultative pathogens only the size of the necrotic spots were diminished or in some cases no visible necroses were produced. The action of ROS were reversed in some host-pathogen combinations by the application of antioxidants, such as superoxide dismutase (SOD) or catalase and resulted in the development of normal disease symptoms. This indicated that superoxide (O2-) and hydrogen peroxide (H2O2) were the most important ROS involved in the inhibition of pathogen growth in planta and in symptom development.different tobacco lines, including transgenic ones, are grown and exposed to natural infection.
Photodynamic therapy (PDT) is a promising therapy especially in skin cancer, using the systemic administration of a photosensitizer (PS), followed by the local irradiation of the tumor with visible light. The antitumor effects of PDT are determined especially by the generation of cytotoxic reactive oxygen species (ROS). The 5,10,15,20-tetrasulfophenyl-porphyrin (TSPP) is a synthetic photosensitizer, which proved its efficiency in in vitro studies. Our study evaluates the effects of PDT with TSPP upon the tumor levels of ROS and upon the metalloproteinases 2 (MMP2) activities on Wistar male rats bearing 256 Walker carcinosarcoma in correlation with the accumulation of PS in the tumor and with the intratumor histological alterations. The evaluations were performed dynamically, at 3 hours, 6 hours, 24 hours and 14 days after the PDT with TSPP. Our results emphasize that 24 hours after the PDT with TSPP, the ROS generation increases, as revealed by protein carbonyls and malondialdehyde levels and the antioxidant capacity (hydrogen donors, thiol groups) decreases in the tumor tissue. These parameters were correlated with the appearance of the histological disorders. The MMP-2 activity increases exponentially in the 24 hours — 14 days post PDT interval. PDT with TSPP offers, in vivo, consistent results regarding ROS generation, MMP2 activation and cytotoxic capacity.
In spite of the enormous information from research on genetics of plant disease resistance, the question still remains unresolved: what is directly inhibiting or killing pathogens and suppressing symptoms in resistant plants? This is particularly true for resistance to viral infections. Here we show that externally applied reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) or ROS-producing (O 2 ·− [superoxide] and H2O2) chemical systems infiltrated into tobacco leaves 2 hours after inoculation suppress replication of Tobacco mosaic virus (TMV) in the susceptible Samsun (nn) cultivar. This was determined by a biological and a real-time PCR method. Infiltration of leaves of the resistant Xanthi (NN) cultivar with the ROS-producing chemicals and H2O2 significantly suppressed local necrotic lesions (i.e. the hypersensitive response) after inoculation of tobacco leaves with TMV. Accordingly, an early accumulation or external application of ROS, such as O 2 ·− and H2O2, in tobacco may contribute to the development of resistance to TMV infection.
It is by now accepted that extremely low frequency electromagnetic fields ELF-EMF (0–300 Hz) affect biological systems although the mechanism has not been elucidated yet. In this study the effect of ELFEMF on the number of apoptotic cells of K562 human leukemia cell line induced or not with oxidative stress and the correlation with heat-shock protein 70 (hsp70) levels was investigated. One sample was treated with H 2 O 2 while the other was left untreated. ELF-EMF (1 mT, 50 Hz) was applied for 3 hours. ELF-EMF alone caused a decrease in the number of apoptotic cells and a slight increase in viability. However, it increased the number of apoptotic cells. In cells treated with H 2 O 2 . hsp70 and reactive oxygen species (ROS) levels were increased by ELF-EMF. These results show that the effect of ELF-EMF on biological systems depends on the status of the cell: while in cells not exposed to oxidative stress it is able to decrease the number of apoptotic cells by inducing an increase in hsp levels, it increases the number of apoptotic cells in oxidative stress-induced cells.
Sagi, M., Fluhr, R. (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 , 336–340. Fluhr R. Production of reactive oxygen species by plant
Heinzel, F. R., Luo, Y., Dodoni, G., et al.: Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc. Res., 2006, 71 (2), 374
., Śnieżko, R., Paduch, R., Abramczyk, D., Filar, J., Kandefer-Szerszeń, M. (2000) The inhibitory effect of zinc on cadmiuminduced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145 , 159
brain development. Nature, 2013, 501 (7467), 412–415. Trifunovic, A., Hansson, A., Wredenberg, A., et al.: Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc