Search Results

You are looking at 1 - 4 of 4 items for :

Clear All
Authors: Éva Bódi, László Lévai, László Huzsvai and Béla Kovács

Összefoglalás

A molibdén alapvető nyomelem a növényi tápanyagellátásban. Növényélettani jelentő ségét 1940-ben bizonyították be. A növény nitrogén anyagcseréjében van fontos szerepe, hiányában nitrát felhalmozódás tapasztalható.

Kutatómunkánk célja kettős volt: Kísérleteink során egyrészt arra a kérdésre kerestük a választ, hogyan változik a kukorica (Zea mays L. cv Norma SC) csíranövény Mo, Fe és S koncentrációja növekvő kon centrációjú Mo-kezelések során. Azért tartottuk fontosnak e három elem koncentrációjának nyomon követését, mert a nitrátredukcióban, a nitrát-reduktáz működésében ezek az elemek kiemelt szerepet töltenek be. Másrészt kísérleteinkkel laboratóriumi körülmények között kívántuk igazolni, hogy szoros összefüggés van a molibdénellátás és nitrátredukció között: a növények fiziológiai molibdén szükségletét biztosítva, csökkenteni tudjuk nitrát tartalmukat.

Kísérleteink az alábbi két típusba sorolhatók: rizoboxos- és tápoldatos kísérletek.

Rizoboxos kísérleteinkben három különböző koncentrációjú Mo-kezelést alkalmaztunk: 30, 90, 270 mg/kg. A kontroll talajhoz pedig nem adtunk molibdént.

Tápoldatos kísérleteinkben a kezelések a következők voltak: 0,01 μM, 0,1 μM, 1 μM Mo koncentrációk. A kontroll tápoldat nem tartalmazott molibdént.

Az eredményekből egyértelműen látható, hogy a Mo-kezelések hatására, a kukori ca csíranövények Mo koncentrációja jelentősen megemelkedett. A kísérleti növények hajtásának és gyökerének külön történő vizsgálata alapján megállapítottuk, hogy a gyökerekben mért Mo-koncentrációk nagyobbak a hajtásban mért értékeknél. Ez arra utal, hogy a gyökerekben, a vizsgált körülmények között a nitrát akkumulációja intenzívebb volt. A molibdénnel ellentétében a kén és a vas koncentrációjának alakulásában nem figyeltünk meg egyértelmű, jelentős növekedést.

Restricted access

Összefoglalás

A növények szeléntartalmát leginkább a talaj felvehető szeléntartalma befolyásolja. Számos európai országban, így Magyarországon is, a talajok szelénben meglehetősen szegények. Kísérleteinkben, talajon (rizoboxos kísérlet) és tápoldaton, kontrollált körülmények között végzett szelénellátás hatását vizsgáltuk, egy egyszikű (kukorica), illetve egy kétszikű (napraforgó) növénynél. A rizoboxos és a tápoldatos kísérleteinkben a szelént szelenit (1, 10, 100 mg/kg), illetve szelenát (0,1, 1, 10 mg/kg) formában adagoltuk, a kontroll (0) növények nem kaptak szelén kezelést. A Se-kezelések hatására a növények Se-tartalma jelentősen megemelkedett. Ez a növekedés a szelenát kezelés hatására intenzívebb volt, mint a szelenit kezelésnél, ugyanakkora koncentrációjú kezelések esetében. A kísérleti növények hajtásának és gyökerének külön történő vizsgálata alapján megállapítottuk, hogy a kukoricánál, és a napraforgónál a Se-koncentrációk nagyobbak voltak a gyökérben, mint a hajtásban. Ez arra utal, hogy a szelén akkumulációja intenzívebb volt a gyökerekben, miközben a hajtásba történő transzlokációja akadályázott. A tápoldatban és rizoboxban (talajban), a szelenit és szelenát kezelés hatására a hajtásban a következő szeléntartalom növekedéseket tapasztaltunk: 1. Tápoldatban: egyszikű (kukorica) szelenit kezelés hatására: 1176 × (0,461 és 542 mg/kg Se); egyszikű (kukorica) szelenát kezelés hatására: 736 × (0,654 és 482 mg/kg Se); kétszikű (napraforgó) szelenit kezelés hatására: 104 × (1,38 és 143 mg/kg Se); kétszikű (napraforgó) szelenát kezelés hatására: 221 × (2,97 és 656 mg/kg Se). A zárójelben a legkisebb, azaz kontroll (0) és a legnagyobb, azaz szelenit esetén 100 mg/kg, míg szelenát esetén 10 mg/kg kezelést kapott növények hajtásának szelén tartalma található. 2. Rizoboxban: egyszikű (kukorica) szelenit kezelés hatására: 45 × (0,736 és 32,8 mg/kg Se); egyszikű (kukorica) szelenát kezelés hatására: 775 × (0,736 és 570 mg/kg Se); kétszikű (napraforgó) szelenit kezelés hatására: 41 × (0,249 és 10,3 mg/kg Se); kétszikű (napraforgó) szelenát kezelés hatására: 859 × (0,249 és 214 mg/kg Se). A zárójelben a legkisebb, azaz kontroll (0) és a legnagyobb, azaz szelenit esetén 100 mg/kg, míg szelenát esetén 10 mg/kg kezelést kapott növények hajtásának szelén tartalma található.

Restricted access
Authors: Farzaneh Garousi, Béla Kovács and Szilvia Veres

Selenium (Se) is an essential element for animals and humans, but not plants. However, the capacity of some plants to accumulate and transform Se into bioactive compounds has important implications for human nutrition and health. In this study, sunflower (Helianthus annuus) and maize (Zea mays) seedlings were cultivated in soil to investigate the effect of different rates of sodium selenite (1–90 mg kg–1 soil) and sodium selenate (1–30 mg kg–1 soil) on absorption and translocation of Se and sulphur (S). Sodium selenate decreased growth of sunflower roots at all applied rates and of maize roots at the highest rate applied. In contrast, sodium selenite up to 30 mg kg–1 for sunflower and 3 mg kg–1 for maize resulted in increased shoot and root growth. An increase in Se concentration in soil resulted in an increase in Se and a decrease in S accumulation in roots and shoots of both maize and sunflower. Selenium translocation from roots to shoot was higher in sunflower than maize. Root-to-shoot translocation of Se was 5 to 30 times greater in sunflower and 0.4 to 3 times greater in maize in the sodium selenate than sodium selenite treatments. Sunflower, as a Se-hyperaccumulator with up to 1.8 g kg–1 in shoots (with no significant decrease in shoot biomass) can be a valuable plant in biofortification to improve animal/human nutrition, as well as in phytoremediation of contaminated sites to restore ecosystem services.

Restricted access

Összefoglalás

A növények nitrogén asszimilációja bonyolult biokémiai folyamatok összességén keresztül valósul meg. Növényeink a nitrogént a talajból több formában vehetik fel. A felvett formától függetlenül valamennyi forma ammóniummá alakul, hogy a növény hasznosítani tudja.

Célkitűzésünk volt, hogy laboratóriumi körülmények között vizsgáljuk, hogyan hat a növekvő koncentrációjú molibdénellátás a különböző nitrogén-formákra, valamint hogyan befolyásolja a nitrátasszimiláció folyamatát.

Kísérleti növényként egy kétszikű (napraforgó, Helianthus annuus L. cv Arena PR) növényt választottunk, melynél külön vizsgáltuk a hajtás és a gyökér molibdén koncentrációját.

Kísérletünkkel igazoltuk, hogy a nitrátasszimiláció egyik lényeges mozzanatának, a nitrátredukciónak a zavartalan lejátszódásához a molibdén nélkülözhetetlen. A megfelelő molibdénellátás a nitrát-reduktáz enzim aktivitását növeli, így elkerülhetjük, hogy a nitrát káros mennyiségben halmozódjon fel növényeinkben.

A molibdénellátás és a nitrátredukció közötti összefüggés vizsgálatának gyakorlati értékét különösen a levél- és gyökérzöldségek termesztésénél hasznosíthatjuk, mivel ezek a növényeink a nitrátot az átlagostól jóval nagyobb koncentrációban tartalmazzák. Amennyiben gondoskodunk róla, hogy a talajaink molibdén koncentrációja elérje a növények fiziológiai molibdén szükségletét (0,01 μM), csökkenteni tudjuk nitrát tartalmukat. Ez az eredmény humán-egészségügyi szempontból lényeges.

Restricted access