# Search Results

## You are looking at 1 - 10 of 39 items for :

• "short interval"
• Refine by Access: All Content
Clear All

## On the sum of a prime and a k-th power of prime in short intervals

Acta Mathematica Hungarica
Author:
Y. C. Wang

in short intervals Sieve Methods, Exponential Sums and their Applications in Number Theory 1 – 54 10.1017/CBO9780511526091.004 . Cambridge University Press. [2

Restricted access

## Exponential sums over primes in short intervals

Acta Mathematica Hungarica
Authors:
A. Balog
and
A. Perelli
Restricted access

## Short interval asymptotics for a class of arithmetic functions

Acta Mathematica Hungarica
Authors:
Mübariz Z. Garaev
,
Florian Luca
, and
Werner Georg Nowak

## Summary

We provide a general asymptotic formula which permits applications to sums like \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sum_{x< n\le x+y} \big(d(n)\big)^2, \quad \sum_{x< n\le x+y} d(n^3),\quad \sum_{x< n\le x+y}\big(r(n)\big)^2, \quad \sum_{x< n\le x+y}r(n^3),$ \end{document} $where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$d(n)$\end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$r(n)$\end{document} are the usual arithmetic functions (number of divisors, sums of two squares), and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$y$\end{document} is small compared to~ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$x\$ \end{document} .

Restricted access

## A Note on Primes and Goldbach Numbers in Short Intervals

Acta Mathematica Hungarica
Author:
A. Languasco
Restricted access

## Distribution of the values of ω in short intervals

Acta Mathematica Hungarica
Author:
G. J. Babu
Restricted access

## A note on the distribution of primes in short intervals

Acta Mathematica Hungarica
Author:
J. Pintz
Restricted access

## Limiting distributions of additive functions in short intervals

Acta Mathematica Hungarica
Author:
K. Indlekofer
Restricted access

## On the asymptotic formula for Goldbach numbers in short intervals

Studia Scientiarum Mathematicarum Hungarica
Authors:
D. Bazzanella
and
A. Languasco
Restricted access

## On sums of a prime and four prime squares in short intervals

Acta Mathematica Hungarica
Author:
Xian-Meng Meng
Restricted access

## Uniform approximation and zeros of the derivatives of Hardy'sZ-function on short intervals

Analysis Mathematica
Author:
А. ЛАВРИК
Restricted access