Search Results

You are looking at 1 - 2 of 2 items for :

  • "sludge digester" x
  • Refine by Access: All Content x
Clear All

The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.

Restricted access
Acta Microbiologica et Immunologica Hungarica
Authors:
Erika Tóth
,
Tamás Tauber
,
Balázs Wirth
,
Marcell Nikolausz
,
Márton Palatinszky
,
Peter Schumann
, and
Károly Márialigeti

The effect of several easily degradable substrates, such as protein, starch and sunflower oil was investigated on the bacterial community of a laboratory-scale biogas model system. Besides measuring gas yield, Denaturing Gradient Gel Electrophoresis (DGGE), Phospholipids Fatty Acid Analysis (PLFA) for Bacteria and T-RFLP analysis of the mcrA gene for Archaea were used. The community of the examined biogas reactors adapted to the new substrates through a robust physiological reaction followed by moderate community abundance shifts. Gas yield data clearly demonstrated the physiological adaptation to substrate shifts. Statistical analysis of DNA and chemotaxonomic biomarkers revealed community abundance changes. Sequences gained from DGGE bands showed the dominance of the phyla Bacteroidetes and the presence of Firmicutes (Clostridia) and Thermotogae. This was supported by the detection of large amounts of branched 15-carbon non-hydroxy fatty acids in PLFA profiles, as common PLFA markers of the Bacteroidetes group. Minor abundance ratios changes were observed in the case of Archaea in accordance with changes of the fed substrates.

Restricted access