Search Results

You are looking at 1 - 10 of 12 items for :

  • "sorption and desorption isotherms" x
  • All content x
Clear All

Abstract

Proper understanding of sorption behaviour of the materials is important from the point of view of fundamental research and technology as well for applied building technology. In this paper a simple method is presented for measuring water sorption capability of solid bodies. Moisture sorption and desorption measurements were carried out on soil samples by using climatic chamber. After drying the samples in a Venticell 111 type drying equipment they were treated with a Climacell 111 type climate chamber, where the relative humidity (RH) was varied from 40 to 83% at 22°C for different times (40, 80, 120 and 240 minutes). The samples reached the equilibrium moisture content after 120 minutes for sorption. The desorption isotherm measurements were carried out at 22°C for 80 minutes of exposure at constant RH. At this point hysteresis phenomenon was observed. Besides the moisture content figures the time evolution of the damping process is also presented in this paper.

Restricted access

The aim of the paper is to investigate the hygrothermal properties of a newly developed ultra-lightweight polystyrene concrete, based on laboratory measurements. It describes the measuring process of thermal conductivities, and determines the declared thermal conductivity. The temperature and moisture conversion coefficients are determined, and new approximate functions are introduced. The paper describes the sorption and desorption isotherms, and gives polynomial approximate functions. The paper also investigates the temperature dependency of sorption curves. It determines the water absorption coefficient and the free water saturation. Furthermore, it describes the measuring process of the water vapor permeability. The water vapor resistance factor and water vapor diffusion-equivalent air layer thickness are calculated.

Restricted access

Abstract  

The effect of various solid soil components on the retention of Cs was investigated by using batch technique and selective extraction method. The sorption and desorption isotherms of Cs on the untreated, calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001M CaCl2. It was found that all isotherms are nonlinear, and that the sorption-desorption hysteresis on the calcareous soil actually occurs on the same time scale.

Restricted access

Abstract  

The effect of different solid soil components of calcareous soils on the retention of SeO3 has been investigated by a batch technique and selective extraction method. The sorption and desorption isotherms of SeO3 on the untreated calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001M CaCl2. It was found that all isotherms are linear, the sorption-desorption hysteresis for untreated soil and treated soils is obvious and the retention of SeO3 in calcareous soil is mainly attributed to the oxides.

Restricted access

Abstract  

The effect of different solid components of calcareous soil on the retention of Sr was investigated by using batch technique and selective extraction method. The sorption and desorption isotherms of Sr on the untreated calcareous soil and the three treated soils were determined at 20°C, pH 7.8±0.2 and in the presence of 0.001 M CaCl2. It was found that all isotherms are linear and that the sorption of Sr on the calcareous soil can be described by a reversible sorption process and the sorption mechanism is mainly ion exchange.

Restricted access

Abstract  

The effect of organic matter and iron oxides as solid components of the red earth on the retention of SeO3 has been investigated by a batch technique and selective extraction method. The sorption and desorption isotherms of SeO3 on the untreated red earth and the three treated soils were determined at 20°C, pH 6.8 or 7.2 and in the presence of 0.01M CaCl2. It was found that the sorption-desorption hysteresis for untreated an treated soils is obvious and the clays play an important role in the sorption-desorption hysteresis, and that the retention of SeO3 on red earth is attributed to the iron oxides to a great extent.

Restricted access

Abstract  

The sorption and desorption isotherms of untreated calcareous soil and three treated soils to remove CaCO3, organic matter (OM) and both CaCO3 and OM were determined and analyzed with the Freundlich equation at pH 7.8, moderate concentrations of NpO2 + (~10-5mol/l), in the presence of 0.01 mol/l CaCl2 and under ambient aerobic conditions. The relative contribution of CaCO3 and OM to the neptunium(V) sorption on calcareous soil and the sorption/desorption hysteresis is discussed. The effects of adding fulvic acid (FA) and carbonate in to the solution on the sorption of neptunium(V) on the soils were also studied. The sorption and desorption characteristics of NpO2 +, Zn2+, Sr2+ and Cs+ on the soils are compared.

Restricted access

Abstract  

Sorption of thorium (IV) on goethite was investigated as a function of contact time, pH, ionic strength, anions, solid-to-liquid ratio (m/V) and Th(IV) concentration using batch technique. The results showed that the sorption of Th(IV) was strong pH-dependence, and increased from ~10 to ~100% over the pH range of 2.0–4.0, and then kept a constant level in the higher pH range. The sorption of Th(IV) increased with increasing m/V and independent of ionic strength. It was clear that phosphate and FA significantly enhanced Th(IV) sorption on goethite. The sorption and desorption isotherms were investigated at pH 2.90 ± 0.05 and analyzed with Freundlich and Langmuir models, respectively. Compared to Langmuir model, Freundlich model could fit the experimental data better, according to the high relative coefficients.

Restricted access

Abstract  

The effect of pH and fulvic acid on the sorption of Sr on bentonite was investigated by using batch experiments. The sorption and desorption isotherms of Sr on bentonite were determined at room temperature, at pH 6.0±0.2 and in presence of 0.1M NaCl. It was found that the sorption of Sr is independent at pH<8, and then increases slightly with increasing pH. Fulvic acid increases the sorption of Sr significantly on bentonite at low pH, but decreases the sorption of Sr at pH>8. The sorption of Sr on bentonite can be described by a reversible sorption process and the sorption mechanism consists mainly of ion exchange.

Restricted access

Abstract  

The effect of different solid components of calcareous soil on the retention of I was investigated by a batch technique and selective extraction method, and the effect of -irradiation was also investigated. The sorption and desorption isotherms of I on the one untreated, three treated soils and the calcareous soil irradiated with -rays were determined at 30 °C, pH 8.1±0.2 and in the presence of 1.0×10–4M or 0.67×10–5M CaCl2. It was found that the sorption-desorption hysteresis on the calcareous soil actually occurs on the same time scale, that iodine can be easily transported in the calcareous soil and that the exceptionally high contribution of organic matter to the iodine sorption is demonstrated.

Restricted access