Search Results

You are looking at 1 - 10 of 55 items for :

  • "spring wheat cultivars" x
  • All content x
Clear All

Cheng, P., Chen, X.M. 2010. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor. Appl. Genet. 121 :195–204. Chen X.M. Molecular mapping of a

Restricted access

Eleven spring wheat cultivars were compared in terms of the stability of their grain yield and grain quality. The cultivars’ stability was evaluated separately at two different crop management levels – moderate-input management and high-input management. Three stability models were used for the two crop management levels based on a linear mixed model framework with restricted maximum likelihood. The Shukla model was the most appropriate for the evaluation of stability of tested spring wheat cultivars. The thousand-grain weight, starch content, Zeleny sedimentation value and test weight were characterized, and the stability ranking cultivars at moderate-input management level was mostly consistent with the rank of cultivars 24 for high-input management level. For grain yield, grain protein content and wet gluten content, the stability rankings were not consistent. Cultivars ‘Monsun’ and ‘Parabola’ are the most stable cultivars for grain yield in moderate-input management and high-input management, respectively. Cultivar ‘Hewilla’ was the stable cultivar for all quality traits at moderate-input management. Cultivar ‘Arabella’ was the most stable cultivar at high-input management level.

Restricted access

Lanzou Alkaline Stretched Noodles (LASN) was a traditional staple food in northwest China for nearly 90 years. LASN specialty wheat breeding has become an important target since 1990s. In order to discover the LASN specialty wheat quality requirement for allelic variations at Glu-3 of northwest China spring wheats. Two northwest China spring wheat cultivars and 39 elite F6 breeding lines were adopted to determine the low-molecular-weight glutenin subunits (LMW-GS) composition by one step one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) basing on the protocol of Singh et al. (1991). The results showed that Glu-A3d and Glu-B3g were correlated to high protein content, high volume of SDS-sediment and super dough strength (W). While Glu-A3a was bad to dry gluten content and SDS-sediment as well as dough properties such as dough strength (W) and dough tenacity (P). Moreover, Glu-B3j has not significant influence on flour quality, but it has the negative effect on dough strength (W) and dough extensibility (L). As for LASN quality, Glu-A3d and Glu-B3g were beneficial alleles and Glu-A3a was unbeneficial alleles for LASN quality.

Restricted access

Lanzhou Alkaline Stretched Noodles (LASN) has introduced by Meng et al. in previous research paper (2007). In order to discover the LASN specialty wheat quality requirement for allelic variations at Glu-1 of northwest China spring wheats, 2 northwest China spring wheat cultivars and 39 elite F6 breeding lines were adopted to determine the high-molecular-weight glutenin subunits (HMW-GS) composition by one step one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) based on the protocol of Singh et al. (1991). The results showed that the wheat quality and LASN quality were characterised by Glu-1 alleles significantly. Glu-A1 /1 correlated to high protein content and better extensibility (L) than other allelic variations. Glu-A1 /1, Glu-B1 /17+18 and Glu-D1 /5+10 were beneficial to dough strength (W), meanwhile Glu-A1 /2* and Glu-D1 /5+10 were good to dough tenacity (P). Glu-D1 /5+10 strongly correlated to high volume of SDS-sediment significantly. Allelic variations at Glu-A1 / (1, 2*), Glu-B1 /17+18 and Glu-D1 /5+10 were beneficial alleles for wheat quality as well as LASN quality. However, Glu-A1 /null and Glu-D1 /2+12 were inferior alleles for wheat quality and LASN quality.

Restricted access

cultivar Frontana. Theor. Appl. Genet. 109: 215–224. Buerstmayr H. Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana

Restricted access

, Figure 1 ). Content of individual and total phenolics was significantly different between varieties (Tables 2 and 3 ). The average concentrations of total phenolic acids and flavonoids were definitely higher in spring wheat cultivars than in the

Open access

was reported. The average concentrations of total researched compounds were definitely higher in spring wheat cultivars than in winter ones. It can be concluded that the Brawura, Łagwa, and Kandela varieties had the highest content of benzoxazinoids

Open access

Cultivation of winter wheat varieties in the West Siberian region of Russia has competitive advantages compared to spring varieties: utilization of spring-summer moisture, early maturation and harvest and a high yield potential. The poor resistance of winter varieties to foliar diseases results in significant yield losses and facilitates the spread of pathogens to the spring wheat cultivars. The present study was conducted to evaluate the effectiveness of molecular markers specific for VRN-1 and Lr loci in selecting winter wheat genotypes resistant to leaf rust. The winter wheat cultivars Biyskaya ozymaya and Filatovka were crossed with spring wheat introgression lines 21-4 and 5366-180 and the spring wheat cultivar Tulaikovskaya 10 carrying LrTt2, LrAsp5 and Lr6Ai#2 loci from Triticum timopheevii, Aegilops speltoides and Thynopyrum intermedium, respectively. To identify winter wheat plants homozygous for target loci, F2 populations were screened with functional markers to VRN-1 genes and with markers specific for alien genetic material. Based on the genotyping analysis of 371 F2 plants a total of 44 homozygous genotypes with winter habit was identified. There were eight genotypes containing Lr loci among them. Evaluation of F2-derived F3-4 families for both seedling and adult resistance showed that only one F3-4 family had moderate susceptible reaction type to the field population of leaf rust. Others ranged from nearly immune to resistant with severity of 5%. The data also indicated the utility of the VRN-1 allele-specific markers for detection of genotypes with winter habit without vernalization at early stages of plant breeding.

Restricted access

We characterized a representative set of 42 spring wheat cultivars from Russia and adjacent regions for 3 Vrn loci. The 42 genotypes were screened, along with 3 genotypes of known Vrn genes, using previously published genome-specific polymerase chain reaction (PCR) primers designed for detecting the presence or absence of dominant or recessive alleles of the major Vrn loci: Vrn-A1, Vrn-B1 and Vrn-D1. The dominant promoter duplication allele Vrn-A1a was present in 28 of 42 cultivars, whereas the promoter deletion allele Vrn-A1b was present in only 1 of the Russian cultivars (Triticum aestivum L. ‘Pyrothrix 28’). The intron deletion allele Vrn-A1c was not present in any tested cultivar. The dominant Vrn-D1 allele was found in 1 of the cultivars. Thirteen of the spring wheat cultivars tested here carry the recessive vrn-A1 allele. However, for 6 cultivars, there were inconsistencies between PCR data and genetic segregation analysis, showing the presence of the dominant Vrn-A1 gene. No inconsistencies were found in the case of Vrn-B1 locus. A new combination of specific primers allowed amplification of the common Vrn-B1a allele along with the novel Vrn-B1c allele, which was present in 17 of the studied cultivars (40%). Twenty-five cultivars (59%) had dominant alleles of Vrn-A1a and Vrn-B1 in combination. We showed the predominance of the Vrn-B1c allele among cultivars with monogenic control of vernalization in West Siberia and Kazakhstan. In the absence of epistatic effects of Vrn-A1, this allele causes an earlier heading time compared to Vrn-B1a, thereby avoiding early fall frosts. Suggestions are made concerning the origin and distribution of the Vrn-B1c allele among Russian spring wheats.

Restricted access

The genetic diversity of 116 spring bread wheat cultivars released in Kazakhstan from 1929-2004 was studied by means of a genealogical analysis. The tendency of genetic diversity to change over time was traced by analysing a series of n ´ m matrices, where n is the number of released cultivars and m is the number of landrace ancestors. The pool of landrace ancestors of spring wheat cultivars in 1929-2004 contained a total of 114 landraces and old varieties, including 19 from Kazakhstan and Central Asia and 23 from neighbouring regions of Russia. The original ancestors differ significantly in frequency of presence and hence in their importance in the genepool of spring wheats cultivated in Kazakhstan. Significant differences in the contributions of dominant ancestors to cultivars for various regions have been revealed, showing that those ancestors were specifically adapted to different growing conditions. During the past 75 years, genetic diversity has increased due to the wide use of foreign materials in breeding programmes. A more detailed study has shown that during the period analysed, 15 landraces from Kazakhstan and neighbouring regions of Central Asia and Russia (35% of local germplasm) were lost from the pedigrees. The cluster structure of modern cultivars included in the Kazakhstan Official List (2002) was established. By analysing coefficients of parentage, significant differences in the genetic diversity of cultivars from various growing regions were revealed.

Restricted access