Search Results
1 Introduction Starch, a momentous carbohydrate for energy storage in plants, exists widely in fruits, cereals, tubers, and roots. It plays an important role in food processing and is generally served as a gelling agent and thickener in food
Anonymous 1982. Mstat, version 3.00/EM, package program. Dept Crop and Soil Sciences, Michigan State University, USA. Anonymous 2001. International Starch Institute, Science Park Aarhus, Denmark
In the present study, isothermal microcalorimetry was introduced as a tool to investigate properties of starch retrogradation during the first 24 h. The study was made on purified amylose and amylopectin from corn, as well as on native starches, such as wheat, potato, maize, waxy maize and amylomaize, differing in their amylose content. The results were obtained in the form ofP-t traces (thermal powervs. time), and integration of these traces gave a net exothermic enthalpy of reaction, caused by the crystallization of amylose and amylopectin. TheP-t traces reflected the quantities of amylose and amylopectin in the starch studied. Depending on the amylose content and the botanical source of the starch, the rate of crystallization of amylose was high and predominated over that of amylopectin during the first 5–10 h. The contribution from amylose crystallization to the measured exothermic enthalpy was very substantial during this period. After ∼10 h, amylose crystallized at a lower constant rate. During the first 24 h, amylopectin crystallized at a low steady rate. The exothermic enthalpies obtained by the isothermal microcalorimetric investigations during the first 24 h of retrogradation were generally low in relation to the endothermic melting enthalpies observed by differential scanning calorimetry (DSC) measurements after 24 h of storage. The discrepancies in enthalpy values between the two methods are discussed in relation to phase separation and the endothermic effects owing to the decrease in polymer-water interactions when polymer-rich regions in the starch gel separate. Besides the exothermic enthalpies obtained, theP-t traces also made it possible to study the initial gelation properties of amylose from different botanical sources. The present study further demonstrated that isothermal microcalorimetry can provide a possible way to investigate the antistaling effect of certain polar lipids, such as sodium dodecylsulphate (SDS) and 1-monolauroyl-rac-glycerol (GML), when added to starches of different botanical origin. The net exothermic heat of reaction for starch retrogradation during the first 24 h was decreased when GML or SDS was added to the starch gels. The recordedP-t traces also showed how the effect of the added lipid influenced different periods during the first 24 h of starch retrogradation, and that the effect depended mainly on the amylose content, the botanical source of the starch, and the type of lipid used. When GML or SDS was added to waxy maize, the isothermal microcalorimetric studies clearly indicated some interaction between amylopectin and the polar lipids. These results concerning the action of anti-staling agents are further discussed in relation to the helical inclusion complexes formed between amylose-polar lipid and amylopectin-polar lipid.
, W. , Lin , R. , Corke , H. 1997 . Physicochemical properties of common and tartary buckwheat starch . Cereal Chem. 74 : 79 – 82 . Li , W. , Zeng , H
Abstract
The degradation of cellulose and starch samples in air and nitrogen has been investigated by thermal analysis techniques. The techniques employed were differential thermal analysis, rising temperature and temperature jump thermogravimetry. Rate data were obtained from these experiments and Arrhenius parameters calculated from these values. This data was used to determine the mechanism by which the cellulose and starch samples degraded. The Arrhenius parameters were also calculated. The behavior of starch and cellulose upon thermal analysis were compared and are reported.E act for corn starch was found to be 474 kJ mol−1 and for a cellulose 242 kJ mol−1.
Abstract
Corn starch, partially hydrolyzed by fungal α-amylase was investigated by using thermal analysis, microscopy and X-ray diffraction. After enzymatic treatment lower degradation onset temperatures were observed. DSC analysis showed almost similar range of gelatinization temperature, however, the enthalpies of gelatinization increased for the partially hydrolyzed starch granules. According to the X-ray diffraction analysis, stronger cereal pattern peaks were recognized after enzymatic digestion. The results suggested that the hydrolysis was more pronounced in the amorphous part of the starch granules.
Abstract
The present work proposes evaluation of the gelatinization processes of starch by means of DSC coupled with a photovisual system. The use of DSC, TG and DTA for a fast and efficient evaluation of the starch is suggested. The DSC curves of starch gels with water contents of 20, 30, 40 and 50% (mass/v) exhibited different phase transitions, corresponding to the gelatinization processes at the different water contents for the different lots. The DSC-photovisual system confirmed calorimetric behaviour differences between the starch lots studied.
Jackfruit seed starch was annealed by single stage and double stage processes and characterised for changes in properties. Single-stage annealing gave higher crystalline order than double-stage annealed starch. No major change in the granular morphology was observed. Annealing resulted in notably altered pasting properties. Increased peak viscosity was indicative of molecular rigidity developed in the granules due to annealing. The increased thermal stability in DSC and specific peak sharpening in the XRD patterns of single-stage annealed starches indicated development of ‘site specific’ crystallinity. The new crystallites formed during the first stage of double-stage annealing were heat labile as crystallinity lowered after the second stage. Single stage annealed jackfruit seed starch can be used for noodle making.
Cassava ( Manihot esculenta Crantz) starch-based vegetable beverage (cassava milk) was formulated to get a composition close to that of cow’s milk with 3% cassava starch, 4% soybean proteins, 3% soybean oil and 0.3% calcium citrate. Heat treatment of the dry starch at 110 °C for 6 h was done prior to the addition of other components to stabilise milk and to avoid gelatinisation. The most stable form of cassava milk that did not separate into two phases for 10 days was obtained by homogenisation at high pressure 12,000 psi/5 min. Milk with starch particle size of 10 μm was found to have sensory qualities close to that of cow’s milk with white colour and viscosity of 7.8 cP. Cassava milk homogenised at 12,000 psi/5 min with cow’s milk (50%) and aromatised with 1% chocolate flavour was given the highest score by 20 sensory panellists. The final product was a white milky solution with good taste, good digestibility, homogeneous, physically and microbiologically stable, and had a nutritional composition similar to that of cow’s milk.
We describe an application of DSC as an analytical ‘fingerprinting’ method that has been used to characterize the thermal properties of wheat starch in low-moisture, wheat-flour-based baked products, including cookies, crackers, and pretzels. This use of DSC has enabled us to relate starch thermal properties, on the one hand, to starch structure, and on the other hand, to starch functionality, in terms of baking performance and finished-product quality.