Search Results

You are looking at 1 - 4 of 4 items for :

  • "steel fibre reinforcement" x
  • All content x
Clear All

Stroeven P. (1995), Steel fibre reinforcement at boundaries in concrete elements. New Development in Concrete Science and Technology DeCSAT’95, Printing House Nanjing, Univ. of Chemical Technology, pp. 658

Restricted access

Steel fibre reinforcement at boundaries in concrete elements New Development in Concrete Science and Technology DeCSAT’95, Printing House Nanjing Univ. of Chemical Technology 658 – 663

Restricted access

Abstract

The present paper of a series deals with the experimental characterisation of compressive strength and compressive behaviour (stress-strain relationship) of different structural concrete containing different volume of steel fibre reinforcement (0 V%, 0.5V%, 1.0V%, 75 kg/m3, 150 kg/m3) and different configuration of steel fibres (crimped, hooked-end). Compressive tests were carried out on standard cube (150 mm × 150 mm × 150 mm) and cylinder (Ø = 150 mm, l = 300 mm) specimens considering random fibre orientation. Since the fibre orientation may significantly affect the compressive behaviour, test series were also performed on cylinders (Ø = 70 mm, l = 100 mm) drilled out of fibre reinforced concrete beams and prisms (100 mm × 100 mm × 240 mm) sawn out of steel fibre reinforced deep beams. Throughout the tests stress-strain relationships were registered on the standard cube and cylinder specimens as well. In conclusion, behaviour of steel fibre reinforced concrete was examined in compression taking into consideration different experimental parameters such as fibre content, type of fibres, fibre configuration, fibre orientation, size of specimens (size effect) and concrete mixture.

Restricted access

The present paper of a series deals with the experimental characterisation of flexural toughness properties of structural concrete containing different volume of hooked-end steel fibre reinforcement (75 kg/m3, 150 kg/m3). Third-point flexural tests were carried out on steel fibre reinforced concrete beams having a cross-section of 80 mm × 85 mm with the span of 765 mm, hence the shear span to depth ratio was 3. Beams were sawn out of steel fibre reinforced slab elements (see Part I) in order to take into consideration the introduced privilege fibre orientation (I and II) and the position of the beam (Ba-a, Ba-b, Ba-c) before sawing (see Part I). Flexural toughness properties were determined considering different standard specifications, namely the method of the ASTM (American Standards for Testing Materials), the process of the JSCE (Japan Society of Civil Engineering), and the final proposal of Banthia and Trottier for the post cracking strength. Consequently, behaviour of steel fibre reinforced concrete was examined in bending taking into consideration different experimental parameters such as fibre content, concrete mix proportions, fibre orientation, positions of test specimens in the formwork, while experimental constants were the size of specimens, the type of fibre used and the test set-up and test arrangement.

Restricted access