Search Results

You are looking at 1 - 10 of 38 items for :

  • "synthetic hexaploid" x
  • All content x
Clear All

Abbreviations SHW synthetic hexaploid wheat HMW-GS high-molecular-weight glutenin subunits

Restricted access

tauschii (Coss.) Schmal. ( Aegilops squarrosa auct. Non L.), in synthetic hexaploid wheats ( T. turgidum L. s. lat. X. T. tauschii ; 2n=6x=42, AABBDD), and its potential utilization for wheat improvement. Genetic Resources and Crop

Restricted access

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Restricted access

Wheat kernel morphology is a very important trait for wheat yield improvement. This is the first report of association analysis of kernel morphology traits in wheat breeding lines. In Qinghai, China, the research described here involved genome-wide association analysis in breeding lines derived from synthetic hexaploid wheat with a mixed linear model to identify the quantitative trait loci (QTLs) related to kernel morphology. The 8033 effective Diversity Array Technology (DArT) markers produced a genetic map of 5901.84 cM with an average density of 1.36 markers/cM. Population structure analysis classified 507 breeding lines into three groups by Bayesian structure analysis using unlinked markers. Linkage disequilibrium decay was observed with a map coverage of 2.78 cM. Marker-trait association analysis showed that 15 DArT markers for kernel morphology were detected, located on nine chromosomes, and explained 2.6%–4.0% of the phenotypic variation of kernel area (KA), kernel width (KW), kernel length (KL) and thousand-kernel weight (TKW). The marker 1139297 was related to both the KL and KA traits. Only six DArT markers were close to known QTLs. The parent SHW-L1 carried eight favored alleles, while other seven favored alleles were derived from elite common wheat cultivars. These QTLs, identified in elite breeding lines, should help us understand the kernel morphology trait better, and to provide germplasm for breeding new wheat cultivars for Qinghai Province or other regions.

Restricted access
Cereal Research Communications
Authors: S. Osipova, A. Permyakov, M. Permyakova, V. Davydov, T. Pshenichnikova, and A. Börner

location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in ‘Chinese Spring’ wheat. Plant Breeding 1110 :177–184. Worland A

Restricted access

Four amphiploid lines (SHW) based on T. monococcum (Tm) and T. boeoticum (Tb) were crossed to T. durum varieties to generate 13 combinations. Field germination and winter survival of hybrid plants in F2 were assessed. Among all crosses, those with SHW8A-Tb and SHW9A-Tm showed highest field germination but with different degrees of spike fragility. The variation on seed number and weight per main spike was studied in F4–6 from SHW8ATb/ Progres and SHW5A-Tb/Severina crosses after individual selection for these traits. Ten lines with durum phenotype from the former and three genotypes with dicoccum plant shape from the latter cross were developed. SDS-PAGE indicated the presence of HMW-GS 1Ax2*+1Aynull subunits in four lines, among which 1Ax2* was inherited from T. boeoticum acc.110 through SHW8A-Tb. Most of the selected genotypes possessed γ-gliadin45, which was relating to good end-use quality. Powdery mildew testing showed that all progenies resulted from the SHW8A-Tb/Progres were susceptible to 12 races of the pathogen, while three lines derived from the SHW5A-Tb/Severina cross behaved differently: G32 expressed resistance to six, G33 to 2, and G34 to 5 races. The selected genotypes from crosses involving SHW with T. boeoticum exhibited good breeding performance compared to tetraploid wheat parents, and might be of breeding interest to further research.

Restricted access

The B(S) genome diploids (2n = 2x = 14) are a unique reservoir of genetic diversity that can provide wheat breeders a rich source of allelic variation for stress traits that limit productivity. Restricted in practical use essentially due to their complex chromosomal behavior, these diploids have been in limited practical usage. The classic utilization example has been the suppression activity of the Ph locus and role in alien genetic transfer aspects that has been a standard in cytogenetic manipulation studies. For applied efforts focusing on Aegilops speltoides researchers in CIMMYT initiated an ambitious program to make AABBBB(SS) synthetics and made progress by generating over 50 such synthetics. Of these 20 were available for this study in which phenology and powdery mildew screening were evaluated. Four of these 20 synthetics appeared to be useful sources for further exploitation in breeding. These were entries 6, 9, 10 and 11 suited for exploitation in pre-breeding, with positive phenological characters particularly high thousand-kernel weight and are cytologically near euploid at 2n = 6x = 42. The subtle hyper (43) and hypoploid number would not negate their applied use potential. Preference however goes to genotypes 9 and 11.

Restricted access

89 Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. ( Aegilops squarrosa auct. non L.) in synthetic hexaploid

Restricted access

synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J. Econ. Entomol. 96 :202–206. Andersen S.B. Expression and suppression of resistance to

Restricted access

Lage, J., Skovmand, B., Pena, R. J., Andersen, S. B. (2006): Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Resour. Crop Evol. , 53 , 955–962. Andersen S. B

Restricted access