Search Results

You are looking at 1 - 10 of 66 items for :

  • All content x
Clear All

. 2006 76 670 672 Fletcher, R. A., Hofstra, G. (1988): Triazoles as potential plant protectants. In: Berg, D., Plempel, M

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Liang Xue, Feng-Qi Zhao, Xiao-Ling Xing, Zhi-Ming Zhou, Kai Wang, Hong-Xu Gao, Jian-Hua Yi, Si-Yu Xu, and Rong-Zu Hu

Introduction Triazole is a five-membered heterocyclic compound, which contains three nitrogen atoms. The three nitrogen atoms are on position 1,2,4 or 1,2,3 of a five-membered heterocycle. Triazole derivative has proven to be a

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Liang Xue, Feng-Qi Zhao, Xiao-Ling Xing, Zhi-Ming Zhou, Kai Wang, Hong-Xu Gao, Jian-Hua Yi, and Rong-Zu Hu

. Recently, many studies in developing energetic salts and energetic ionic liquids based on 1,2,3-triazole and 1,2,4-triazole as cations and nitrates, perchlorates, and dinitramides as anions have been made [ 4 – 6 ]. On the thermal aspect, kinetic and

Restricted access

. ( 1988 ) Triazoles as potential plant protectants . In: Berg, D. , Plemple, M. (eds), Sterol biosynthesis inhibitors . Ellis Horwood Ltd. , Cambridge , pp. 321 – 331 . 18

Restricted access
Journal of Flow Chemistry
Authors: Anne-Catherine Bédard, Jeffrey Santandrea, and Shawn K. Collins

The continuous-flow synthesis of a series of 11- to 26-membered macrocycles via copper-catalyzed azide-alkyne cycloaddition is reported. The approach employs homogeneous catalysis to promote formation of triazole-containing macrocycles in good to excellent yields (65–90%) at relatively high concentration (30–50 mM) using a phase separation strategy.

Restricted access

Abstract  

A series of new complexes with mixed ligands of the type [ML(C3H3O2)2nH2O (((1) M=Mn, n=1; (2) M=Co(II), n=2; (3) M=Ni(II), n=4; (4) M=Cu(II), n=1.5; (5) M=Zn(II), n=0; L=3-amino-1,2,4-triazole and (C3H3O2)=acrylate anion) were synthesized and characterised by chemical analysis and IR data. In all complexes the 3-amino-1,2,4-triazole acts as bridge while the acrylate acts as bidentate ligand except for complex (5) where it is found as unidentate. The thermal behaviour steps were investigated in nitrogen flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion and 3-amino-1,2,4-triazole degradation respectively. The final products of decomposition are the most stable metal oxides, except for complex (4) that leads to metallic copper.

Restricted access

Abstract  

In order to obtain a better understanding of thermal substituent effects in 1,2,4-triazole-3-one (TO), the thermal behavior of 1,2,4-triazole, TO, as well as urazole and the decomposition mechanism of TO were investigated. Thermal substituent effects were considered using thermogravimetry/differential thermal analysis, sealed cell differential scanning calorimetry, and molecular orbital calculations. The onset temperature of 1,2,4-triazole was higher than that of TO and urazole. Analyses of evolved decomposition gases were carried out using thermogravimetry–infrared spectroscopy and thermogravimetry–mass spectrometry. The gases evolved from TO were determined as HNCO, HCN, N2, NH3, CO2, and N2O.

Restricted access

Summary  

Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3-triazole and 1-(4-sulfonamide-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-fluoro-benzonitrile-[cyano-14C].

Restricted access
Journal of Flow Chemistry
Authors: Sara Sadler, Meaghan M. Sebeika, Nicholas L. Kern, David E. Bell, Chloe A. Laverack, Devan J. Wilkins, Alexander R. Moeller, Benjamin C. Nicolaysen, Paige N. Kozlowski, Charlotte Wiles, Robert J. Tinder, and Graham B. Jones

Abstract

A facile and benign route to N-heterocycles, including triazoles and triazolopyrimidines, has been developed. Using continuous-flow microreactor technology, organic azides are prepared in situ and reacted with cyanoacetamide in a [3+2] cycloaddition to produce a variety of substituted 1,2,3-triazoles, which can be elaborated into useful building blocks. A benzyl-substituted triazole was further functionalized to an analog of the core structure of the antiplatelet agent Brilinta®. The methodology lends itself well to flow chemistry, where reaction volumes are minimized, heating and mixing are consistent, and the need for intermediate azide isolation bypassed. The scope of the process is wide, and the efficiency is high, suggesting this as a practical, green route for the production of triazolo-based heterocycles.

Restricted access

useful strategy to construct such supramolecular frameworks is to employ appropriate organic linker capable of binding metal centers through direct bond formation. 1,2,4-Triazole and its derivatives are very interesting polydentate building blocks because

Restricted access