Browse

You are looking at 1 - 10 of 5,559 items

The incidence of anaerobic bacteria in adult patients with chronic sinusitis: A prospective, single-centre microbiological study
Authors: Edit Urbán, Márió Gajdács and Attila Torkos

Abstract

Introduction

Chronic sinusitis caused by anaerobes is a particular concern clinically, because many of the complications are associated with infections caused by these organisms. The aim of this study was to evaluate the incidence of anaerobic bacteria in chronic sinusitis in adults as a part of a prospective microbiological study.

Materials and methods

Over a one-year period, aspirations of maxillary sinus secretions and/or ethmoid cavities were derived in n = 79 adult patients with chronic sinusitis by endoscopy in a tertiary-care teaching hospital in Hungary. The qualitative and quantitative compositions of the total cultivable aerobic and anaerobic bacterial and fungal flora cultured on the samples were compared. Correct anaerobic species level identifications were carried out according to standard methods.

Results

Bacteria were recovered for all of the 79 aspirates and the numbers of the significant cultured isolates (with colony forming units ≥103) were between 1 and 10. A total of 206 isolates, 106 anaerobic and 100 aerobic or facultative-anaerobic strains were isolated. The most common aerobic bacteria were Streptococcus pneumoniae (n = 40), Haemophilus influenzae (n = 29), Moraxella catarrhalis (n = 6), Staphylococcus aureus (n = 7) and Streptococcus pyogenes (n = 6). The anaerobic bacteria included black-pigmented Prevotella spp. and Porphyromonas spp. (n = 27), Actinomyces spp. (n = 13), Gram-positive anaerobic cocci (n = 16), Fusobacterium spp. (n = 19) and Cutibacterium acnes (n = 8).

Conclusions

This study illustrates the microbial dynamics in which anaerobic and aerobic bacteria prevail and highlights the importance of obtaining cultures from patients with chronic sinusitis for guidance in selection of proper antimicrobial therapy.

Open access
Relevance of anaerobic bacteremia in adult patients: A never-ending story?
Authors: Márió Gajdács and Edit Urbán

Abstract

Obligate anaerobic bacteria are considered important constituents of the microbiota of humans; in addition, they are also important etiological agents in some focal or invasive infections and bacteremia with a high level of mortality. Conflicting data have accumulated over the last decades regarding the extent in which these pathogens play an intrinsic role in bloodstream infections. Clinical characteristics of anaerobic bloodstream infections do not differ from bacteremia caused by other pathogens, but due to their longer generation time and rigorous growth requirements, it usually takes longer to establish the etiological diagnosis. The introduction of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has represented a technological revolution in microbiological diagnostics, which has allowed for the fast, accurate and reliable identification of anaerobic bacteria at a low sample cost. The purpose of this review article is to summarize the currently available literature data on the prevalence of anaerobic bacteremia in adults for physicians and clinical microbiologists and to shed some light on the complexity of this topic nowadays.

Open access
The conundrum of colonization resistance against Campylobacter reloaded: The gut microbota composition in conventional mice does not prevent from Campylobacter coli infection
Authors: Claudia Genger, Sigri Kløve, Soraya Mousavi, Stefan Bereswill and Markus M. Heimesaat

Abstract

The physiological colonization resistance exerted by the murine gut microbiota prevents conventional mice from Campylobacter jejuni infection. In the present study we addressed whether this also held true for Campylobacter coli. Following peroral application, C. coli as opposed to C. jejuni could stably establish within the gastrointestinal tract of conventionally colonized mice until 3 weeks post-challenge. Neither before nor after either Campylobacter application any changes in the gut microbiota composition could be observed. C. coli, but not C. jejuni challenge was associated with pronounced regenerative, but not apoptotic responses in colonic epithelia. At day 21 following C. coli versus C. jejuni application mice exhibited higher numbers of adaptive immune cells including T-lymphocytes and regulatory T-cells in the colonic mucosa and lamina propria that were accompanied by higher large intestinal interferon-γ (IFN-γ) concentrations in the former versus the latter but comparable to naive levels. Campylobacter application resulted in decreased splenic IFN-γ, tumor necrosis factor-α (TNF-α), and IL-6 concentrations, whereas IL-12p70 secretion was increased in the spleens at day 21 following C. coli application only. In either Campylobacter cohort decreased IL-10 concentrations could be measured in splenic and serum samples. In conclusion, the commensal gut microbiota prevents mice from C. jejuni, but not C. coli infection.

Open access
A 10-year single-center experience on Stenotrophomonas maltophilia resistotyping in Szeged, Hungary
Authors: Márió Gajdács and Edit Urbán

Abstract

Stenotrophomonas maltophilia is an aerobic, oxidase-negative and catalase-positive bacillus. S. maltophilia is a recognized opportunistic pathogen. Due to the advancements in invasive medical procedures, organ transplantation and chemotherapy of malignant illnesses, the relevance of this pathogen increased significantly. The therapy of S. maltophilia infections is challenging, as these bacteria show intrinsic resistance to multiple classes of antibiotics, the first-choice drug is sulfamethoxazole/trimethoprim. Our aim was to assess the epidemiology of S. maltophilia from various clinical samples and the characterization of resistance-levels and resistotyping of these samples over a long surveillance period. The study included S. maltophilia bacterial isolates from blood culture samples, respiratory samples and urine samples and the data for the samples, received between January 2008 until December 2017, a total of 817 S. maltophilia isolates were identified (respiratory samples n = 579, 70.9%, blood culture samples n = 175, 21.4% and urine samples n = 63, 7.7%). Levofloxacin and colistin-susceptibility rates were the highest (92.2%; n = 753), followed by tigecycline (90.5%, n = 739), the first-line agent sulfamethoxazole/trimethoprim (87.4%, n = 714), while phenotypic resistance rate was highest for amikacin (72.5% of isolates were resistant, n = 592). The clinical problem of sulfamethoxazole/trimethoprim-resistance is a complex issue, because there is no guideline available for the therapy of these infections.

Open access
No genotoxicity is detectable for Escherichia coli strain Nissle 1917 by standard in vitro and in vivo tests
Authors: Silke Dubbert, Birgit Klinkert, Michael Schimiczek, Trudy M. Wassenaar and Rudolf von Bünau

Probiotic Escherichia coli strain Nissle 1917 (EcN) has a long history of safe use. However, the recently discovered presence of a pks locus in its genome presumably producing colibactin has questioned its safety, as colibactin has been implicated in genotoxicity. Here, we assess the genotoxic potential of EcN. Metabolic products were tested in vitro by the Ames test, a mutagenicity assay developed to detect point mutation-inducing activity. Live EcN were tested by an adapted Ames test. Neither the standard nor the adapted Ames test resulted in increased numbers of revertant colonies, indicating that EcN metabolites or viable cells lacked mutagenic activity. The in vivo Mammalian Alkaline Comet Assay (the gold standard for detecting DNA-strand breaks) was used to determine potentially induced DNA-strand breaks in cells of the gastro-intestinal tract of rats orally administered with viable EcN. Bacteria were given at 109–1011 colony forming units (CFU) per animal by oral gavage on 2 consecutive days and daily for a period of 28 days to 5 rats per group. No significant differences compared to negative controls were found. These results demonstrate that EcN does not induce DNA-strand breaks and does not have any detectable genotoxic potential in the test animals.

Open access
SHP2-independent tyrosine dephosphorylation of cortactin and vinculin during infection with Helicobacter pylori
Authors: Jakob Knorr, Steffen Backert and Nicole Tegtmeyer

The gastric pathogen Helicobacter pylori colonizes approximately half of the human world population. The bacterium injects the effector protein cytotoxin associated gene A (CagA) via a type-IV secretion system into host epithelial cells, where the protein becomes phosphorylated at specific EPIYA-motifs by cellular kinases. Inside the host cell, CagA can interact with over 25 different proteins in both phosphorylation-dependent and phosphorylation-independent manners, resulting in manipulation of host-cell signaling pathways. During the course of an H. pylori infection, certain host-cell proteins undergo tyrosine dephosphorylation in a CagA-dependent manner, including the actin-binding proteins cortactin and vinculin. A predominant response of intracellular CagA is the binding and activation of tyrosine phosphatase, the human Src-homology-region-2-domain-containing-phosphatase-2 (SHP2). Here, we considered the possibility that activated SHP2 might be responsible for the dephosphorylation of cortactin and vinculin. To investigate this, phosphatase inhibitor studies were performed. Additionally, a complete knockout mutant of SHP2 in AGS cells was created by CRISPR/Cas9 technology, and these cells were infected with H. pylori. However, neither the presence of an inhibitor nor the inactivation of SHP2 prevented the dephosphorylation of cortactin and vinculin upon CagA delivery. Tyrosine dephosphorylation of these proteins is therefore independent of SHP2 and instead must be caused by another, as yet unidentified, protein tyrosine phosphatase.

Open access
Allelic variation in candidate genes associated with wood properties of cultivated poplars (Populus)
Authors: Zoltán Attila Köbölkuti, Klára Cseke, Attila Benke, Mátyás Báder, Attila Borovics and Róbert Németh

Introduction

Since Populus has veritable value as timber, plywood, pulp, and paper, genomic research should create the sound basis for further breeding toward desirable wood quality attributes.

Materials and methods

In this study, we addressed the need for a research methodology that initially identifies and then characterize candidate genes encoding enzymes with wood property phenotypic traits, toward the aim of developing a genomics-based breeding technology.

Results

On 23 different poplar species/hybrid samples, we successfully amplified 55 primers designed on Populus trichocarpa L. Considering the number of polymorphic sites, out of 73,206 bp, 51 SNPs and 31 indel events were found. Non-synonymous single base mutations could be detected in number of 30, 21 out of 164 sequences were the number of minimum recombination events and 41 significant pairwise comparisons between loci could be detected.

Discussion and conclusion

Our results provide a roadmap for a future association genetic study between nucleotide diversity and precise evaluation of phenotype.

Open access
Analysis of aristolochlic acids and evaluation of antibacterial activity of Aristolochia clematitis L.
Authors: Gergely Sámuel Bartha, Gergő Tóth, Péter Horváth, Eszter Kiss, Nóra Papp and Monika Kerényi

Introduction

Several Aristolochia species were used as medicinal herb across Europe and in recent years, their antimicrobial activity has also been investigated.

Materials and methods

In this study, A. clematitis was selected to evaluate the aristolochic acids I and II (AA I and AA II) concentrations and the antimicrobial activity of methanol, hexane, butanol, and ethyl acetate extracts of the root, stem, leaf, root, and fruit. AA I and AA II contents were measured by a validated high-performance liquid chromatography–ultraviolet method.

Results

Each fraction of the plant contained AA I and AA II and the root was found to have the highest contents of AA I (1.09%) and AA II (0.7454%). The minimum inhibitory concentrations of all extracts were determined by standard microdilution method. The fruit’s extracts showed the most efficient antimicrobial effect against both methicillin sensitive and resistant Staphylococcus aureus strains.

Conclusion

Correlation between the AA I and AA II concentrations and the antimicrobial effect was not found.

Open access
Bayesian inference to partition determinants of community dynamics from observational time series
Authors: C. M. Mutshinda, Z. V. Finkel, C. E. Widdicombe and A. J. Irwin

Abstract

Ecological communities are shaped by a complex interplay between abiotic forcing, biotic regulation and demographic stochasticity. However, community dynamics modelers tend to focus on abiotic forcing overlooking biotic interactions, due to notorious challenges involved in modeling and quantifying inter-specific interactions, particularly for species-rich systems such as planktonic assemblages. Nevertheless, inclusive models with regard to the full range of plausible drivers are essential to characterizing and predicting community response to environmental changes. Here we develop a Bayesian model for identifying, from in-situ time series, the biotic, abiotic and stochastic factors underlying the dynamics of species-rich communities, focusing on the joint biomass dynamics of biologically meaningful groups. We parameterize a multivariate model of population co-variation with an explicit account for demographic stochasticity, density-dependent feedbacks, pairwise interactions, and abiotic stress mediated by changing environmental conditions and resource availability, and work out explicit formulae for partitioning the temporal variance of each group in its biotic, abiotic and stochastic components. We illustrate the methodology by analyzing the joint biomass dynamics of four major phytoplankton functional types namely, diatoms, dinoflagellates, coccolithophores and phytoflagellates at Station L4 in the Western English Channel using weekly biomass records and coincident measurements of environmental covariates describing water conditions and potentially limiting resources. Abiotic and biotic factors explain comparable amounts of temporal variance in log-biomass growth across functional types. Our results demonstrate that effective modelling of resource limitation and inter-specific interactions is critical for quantifying the relative importance of abiotic and biotic factors.

Full access
Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach
Authors: Radia Jamee and Romana Siddique

Due to its overall environmental impact, the residual dye in the wastewater from the synthetic dye manufacturing and textile industries is a global concern. The discharge contains a high content of pigments and other additives, possessing complex structures. As per the requirement for dyed clothing, dyestuff in the effluent is less susceptible to acids, bases, and oxygen. Thus, conventional physical and chemical methods are not always efficient in degrading the dyes. Some microorganisms growing in an area affected with textile effluent have the capability to utilize the dyes as a source of carbon or nitrogen or both. As a very clean, inexpensive, and sufficient alternative, bioremediation of textile wastewater using these microorganisms has gained major popularity. This review primarily centers the contribution of bacteria in this sector and the isolation of such bacteria from textile effluent. A secondary focus is discussing the factors which influence the performance by different bacteria.

Open access