Chemistry and Chemical Engineering

You are looking at 1 - 50 of 33,607 items for

  • All content x
Clear All

Abstract

Statins drugs are thought to be among the most prescribed drugs worldwide for the treatment of hypercholesterolaemia. A simple and reliable RP-HPLC method has been successfully employed for simultaneously separating and qualifying three statin drugs including atorvastatin, rosuvastatin and simvastatin in pharmaceutical tablets. The optimal conditions were mobile phase 50:50 (v/v) (formic acid pH 2.50: ETOH), column temperature 40.00 °C, detection wavelength 238.00 nm, and flow rate 1.00 mL/min. The proposed method has been validated based on the ICH guidelines in terms of linearity, precision, accuracy, and limit of detection and limit of quantification. The linear range investigated 2.0–80.0, 4.0–100.00, and 12.00–120.00 µg/mL for rosuvastatin, atorvastatin and simvastatin respectively with coefficients of determination (R2) within the range of 0.9993–0.9995. The LOD and LOQ for rosuvastatin, atorvastatin and simvastatin were (1.57, 4.76 µg/mL), (1.87, 5.66 µg/mL), (3.46, 10.49 µg/mL) respectively. In addition, in order to evaluate the feasibility of the method developed, it was employed towards the quantification of the pharmaceutical tablets for the analytes investigated and excellent recovery was obtained.

Open access

Abstract

A new, sensitive, stability-indicating reversed-phase HPLC method was validated and applied for the simultaneous quantitation of sodium valproate and two paraben preservatives; methylparaben, and propylparaben in the liquid dosage form. Stability tests were carried out through exposure of the analyte's solution to stress conditions. Separation of the analytes was achieved on (waters) C18 Column (150 mm × 3.9 mm, 5 μm). A mixture of 0.05 M monobasic potassium phosphate pH 3.5 and acetonitrile (50:50; v/v) was applied at 1.5 ml/min flow rate and UV detection wavelength at 210 nm. The degradation products and the analytes were completely separated. The linearity was performed in the range of 50–150 % from a target concentration of 10 μg/ml propylparaben, 90 μg/ml methylparaben, and 2.88 mg/ml sodium valproate with a coefficient correlation (R2) 1.0 for methylparaben, propylparaben and sodium valproate. The validation results of the suggested method were in a good agreement with ICH guidelines. Application of the proposed method for analysis of liquid dosage forms was successfully carried out in the routine quality control process.

Open access
Acta Chromatographica
Authors: Mohammed Hamed Alqarnı, Mohamad Ayman Salkini, Prawez Alam, Mazen Talal Alanazı, Maged Saad Abdel-Kader, and Samah M. El Sohafy

Abstract

Plants secondary metabolites undergoes qualitative and quantitative variation due to environmental and growth factors. It is a crucial factor to select the proper time for collection of medicinal plants to assure maximum content of active components reflected as maximum efficacy. Olive leaves (Olea europaea L.) are known traditionally for their antidiabetic effect. The secoiridoid glycoside oleuropein is the main active component of Olive leaves responsible for the biological activity. The current study was conducted to monitor the seasonal variation of oleuropein in Olives leaves collected from the same location. To achieve this goal a validated HPLC method following the ICH guidelines was established. Separation was conducted using RP18 column and a mobile phase consisted of ultrapure water containing 20% acetonitrile and 1% acetic acid. Detection was performed at 254 nm with 1 mL/min flow rate. The method was simple, linear, accurate, precise, specific and robust. The analyses revealed considerable variations in the level of oleuropein throughout the year. This variation cannot be explained by temperature variation during the year. Two points of high levels of oleuropein were detected prior to flowering stage and ripening of the fruits. The levels of growth regulators most likely is responsible for the increased production of oleuropein. It is recommended that leaves intended for medicinal use to be collected during the fruiting stage prior to fruit ripening.

Open access
Acta Chromatographica
Authors: Gobinda Chandra Acharya, Naresh Ponnam, Meenu Kumari, Tapas Kumar Roy, Kodthalu Seetharamaiah Shivashankara, and Manas Ranjan Sahoo

Abstract

Spiny coriander (Eryngium foetidum L.) is a perennial medicinal herb grown in the tropical regions worldwide. In India, it is used as a potential spice for garnishing and flavoring the dishes and treating several ailments. Eryngium spp. found in coastal Odisha, India has a strong aroma similar to the seasonal Coriandrum. The volatile flavor constituents of the unique plants were analyzed through headspace solid-phase microextraction (HS-SPME) using capillary gas chromatography (GC) and gas chromatography-tandem mass spectrometry (GC–MS/MS). The volatile compounds exhibited high chemodiversity, with 10-undecenal as the major component in leaves (44.98%) and branches (57.43%). Fourier-transform infrared (FTIR) spectroscopy identified eight major peaks grouped into six main regions. Chemo profiles of these two corianders were overlapped and showed similar area differences in the spectral peak. The lesser-known perennial Eryngium with high chemodiversity would be a better alternative to the seasonal coriander for aromatic, pharmaceutical, and industrial uses.

Open access

Abstract

Letrozole is one of the third generation aromatase inhibitors. It is suitable for the treatment of postmenopausal patients with advanced breast cancer and early treatment of breast cancer. It is necessary to develop a rapid, reliable, selective and sensitive LC–MS/MS assay to determine letrozole in human plasma to evaluate the clinical efficacy and adverse reactions with clinical pharmacokinetic and therapeutic drug monitoring. Separation was carried out on a Kromasil-C18 column using acetonitrile-water (55: 45, v/v) as mobile phase. Detection was carried out by multiple reaction monitoring on a 3200Qtrap mass spectrometry. The method needed one-step protein precipitation procedure only, and the cycle time was 2.5 min allowing 500–550 samples per day. It was linear within 0.30–50.00 ng/mL for plasma with the limit of detection (LOD) of 0.030 ng/mL. The intra- and inter-day RSD were 5.51–8.63%, 2.28–9.95% and the RE was 0.18–1.65%. The recovery rates of letrozole and internal standard for plasma were 89.30–98.55%. Letrozole was stable under all the conditions in the study. The method was sensitive enough to quantitate letrozole over a period of 288 h after giving a single oral dose of 2.5 mg–24 Chinese healthy volunteers. The absorption of letrozole was rapid with small individual difference, the tissue distribution of letrozole was more than that in blood, and the clearance was slow. Letrozole was similar to three-compartment model in vivo. Due to metabolism and excretion, the AUCs of letrozole varied greatly among individuals.

Open access

ERRATUM: MÚLT-JELEN-JÖVŐ a hazai mezőgazdasági talajvizsgálatokban

PAST-PRESENT-FUTURE in Hungarian soil analyses

Agrokémia és Talajtan
Authors: Vona Viktória, Bakos István Attila, Giczi Zsolt, Kalocsai Renátó, Vona Márton, Kulmány István Mihály, and Centeri Csaba
Full access

Fourier-transzformációs közép-infravörös spektroszkópia alapú szervesanyag-tartalom becslés tábla szintű reprezentativitás-vizsgálata kemometriai módszerekkel

Representativity analysis of middle-infrared spectroscopy-based Organic Carbon assessment on field-scale by chemometric methods

Agrokémia és Talajtan
Authors: Tóth József Attila, Döbröntey Réka, Szegi Tamás, Michéli Erika, and Csorba Ádám

Szervesszén térképezést segítő módszertani kutatásként vizsgáltuk egy szántóföldi művelés alatt álló terület, 3 mélységből származó mintáinak MIR reflektanciáját, illetve szervesszén tartalmát (Walkley-Black). Ezt követően a spektroszkópia mérések eredményeit használtuk a talaj szervesszén-mennyiségének (TOC %) becslésére. Tettük ezt 3 mintakijelölési módszer (Kennard-Stone Sampling - KSS, K-means Sampling - KMS, Latin Hypercube Sampling - LHS) bevonásával, az így kijelölt kalibrációs mintákkal a PLSR modell segítségével becslést végeztünk az adathalmaz további értékeire. Annak érdekében, hogy tábla szintű szervesszén meghatározás során teszteljük becslési pontosságukat, a modellek reprezentativitását – különböző validációs/kalibrációs arány esetén – statisztikai mutatókkal (R2, RMSE) ellenőriztük.

Az eredményekben részleteiben vizsgáltuk a különböző becslési modellek reakcióját eltérő arányú kalibráció és validáció esetén. A modellek R2 és RMSE értékei alapján kijelöltük, hogy mely modellek működtek pontosan még alacsony kalibráció esetén is, illetve abszolút értelemben véve melyik modell volt leghatékonyabb.

Az összehasonlítás eredményeként kijelenthető, hogy az általunk vizsgált talajkörülmények között a 30% alatti, valamint a 70% feletti mintaszámú kalibráció a mintakijelölési módszerek megbízhatóságának ingadozását eredményezte. Az összes minta 30%-val történő kalibráció esetén legjobb eredményt a KSS adta, így ez tekinthető a leggazdaságosabb módszernek. Az abszolút értékben vett legkisebb hibát a K-means sampling eredményezte, a minták 90%-val történő kalibrációt követően.

Kijelenthető, hogy az alkalmazott módszertan esetünkben alkalmas volt – a reprezentativitás megtartása mellett – a szükséges minták számának, ergo a táblaszintű szervesszén-felmérés költségeinek csökkentésére. Továbbá a mintakijelölési módszerek becslési hatékonyságának összehasonlítására is megfelelt az általunk alkalmazott statisztikai vizsgálat. A módszertan a jövőben kiinduló alapja lehet hasonló jellegű kutatásoknak, valamint tábla szintű szervesszéntérképek elkészítésének. A szélesebb körű alkalmazást megelőzően a modelleket nagyobb varianciájú adathalmazok esetén is tesztelni szükséges.

Within the framework of the present research, we mapped the organic carbon content of an arable area, during which we measured the MIR reflectance and organic carbon content (Walkley-Black) of the soil samples collected from the area at three different depths. Subsequently, the results of spectroscopic measurements were used to improve the estimation of the soil organic carbon content (TOC %). Three sample selection models were involved (KSS, KMS, LHS), and with the selected calibration samples, we estimated the additional values of the data set using the PLSR model. In order to test the accuracy of estimation for a table-level organic carbon determination, the representativeness level of the models was checked with statistical indicators (R2, RMSE) at different validation / calibration ratios.

In the results, we thoroughly examined the response of different estimation models with different ratios of calibration and validation. Based on the R2 and RMSE values of the models, we determined which models worked precisely even at low calibration, and in absolute terms, which model was the most efficient.

As a result of the comparison, it can be stated that under the soil conditions we examined, calibration with a sample number below 30% and above 70% caused significant fluctuations in the reliability of the sampling methods. Kennard-Stone sampling (KSS) gave the most precise results for calibration with 30% of all samples, thus it is considered the most economical method. The smallest error overall was given by K-means sampling after calibration of 90% of the samples.

It can be stated that the methodology used in this study was suitable to reduce the samples required for analysis - while maintaining representativeness - therefore reducing the costs of the field-level organic carbon survey.

Furthermore, the statistical analysis we used to compare the estimation efficiency of the sampling methods was also appropriate. The methodology we use may be the basis for similar research in the future, as well as for the production of table-level organic carbon maps. Prior to wider application, models also need to be tested for higher variance datasets.

Open access
Restricted access

Szennyvíziszap kihelyezés rövidtávú következményeinek értékelési lehetősége Sentinel-2 alapú szántóföldi vegetációmonitoring alapján

Evaluate the short-term effects of sewage sludge disposal based on Sentinel-2 vegetation monitoring

Agrokémia és Talajtan
Authors: Kovács Ferenc and Ladányi Zsuzsanna

Az iszapkihelyezések rövidtávú hatásainak megfigyelésére és igazolására több évre kiterjedő, nagy időfelbontású monitoringot terveztünk dél-alföldi, csernozjom talajokon folyamatosan művelt, gyakran évről-évre különböző növényzettel fedett szántóföldi parcellákon. A 14 db 50 m x 50 m-es kvadráton, a Sentinel-2 műholdfelvételezés alapú adatgyűjtést a legnagyobb idő- és térbeli felbontásban alkalmaztuk. Atmoszférikus korrekcióval előfeldolgozott, közel 100 db felhőmentes képből álló adatbázist LANDSAT OLI (Operational Land Imager) felvételekkel kiegészítve, vegetációs indexekkel (EVI, NDVI) értékeltük a nyári félév fotoszintetikus aktivitását és biomassza-produkció változásait térben és időben.

A spektrális index alapú vegetációs ciklus különbségek alapján meghatározhatók a területen termelt változatos növényfajok, a felszínfedettség különbségek és a területhasználati változások. A vizsgálatainkkal párhuzamosan, LADÁNYI et al., (2020) szerint értékelt talajtani eredményekhez hasonlóan az iszapkihelyezés által érintett, illetve nem érintett területek között kimutatható, EVI és NDVI-vel mért statisztikai és térbeli különbségek rövidtávon általánosan nem szignifikánsak. A vizsgált négy termény közül a napraforgó, kukorica biomassza produktuma esetén láthatók index különbségek, amelyek az iszapkihelyezés 1–3 éven belül tapasztalható hatásaként értékelhetők, de ennek igazolására folyamatos monitoring vizsgálat szükséges. A repce és az őszi búza esetén a rendelkezésre álló adatok alapján nem tapasztaltunk hasonlót, sőt esetenként a kihelyezés előtti VI értékek magasabbak. A parcellákat jellemző térbeli heterogenitáson – melyet a kvadrátok jól mintáznak – a szennyvíziszap kihelyezések a vizsgált időszakban nem változtattak.

A két különböző vegetációs index együttes alkalmazása hasznos. Az EVI általános előnyei mellett kiemelhető a dús vegetációs időszak értékelésének pontossága, az összehasonlító elemzésben tapasztalható alkalmazhatósága, míg az NDVI a csekélyebb vegetáció dinamikájában, a vegetációtípusok megkülönböztetésében, vagy a dús vegetációt jellemző változékonyság megfigyelésében lehet érzékenyebb. Érdekes, hogy az NDVI és EVI közötti különbség a szennyvíziszappal kezelt területeken kisebb. A várakozásnak megfelelően, a nagy felbontást igénylő vizsgálatban a LANDSAT adatok, a Sentinel alapú indexértékekkel általánosan szoros statisztikai kapcsolatban vannak és igazolják az értékelés eredményeit, de a parcellákon, adott időkben tapasztalt jelentős eltérések miatt önmagukban nem tudják kiegészíteni a vizsgálatot.

A gazdálkodásváltás ellenére kitűzött cél, a szignifikáns különbségek kimutatása indokolja az aktuális évek adatainak további vizsgálatba való bevonását, amely segít az adathiányos időszakok leszűkítésében is; 2020. év megfigyelése folyamatban van.

The agricultural use of sewage sludge is one of the means of refilling the soil nutrients and an effective tool for sustainable environmental management. In order to monitor and verify the short-term effects of sludge disposal (in parallel with other soil observations) we planned a multi-year, high-resolution data collection for monitoring the effects of disposal in some arable land parcels on 14 pieces of 50 m x 50 m quadrates in southeastern Hungary. Using free Sentinel-2, pre-processed satellite imagery, data acquisition was applied at the highest temporal and spatial resolution supplemented with LANDSAT-8 recordings, evaluating the vegetation period from 2016 to 2019 (almost 100 images). We evaluated the photosynthetic activity of the summer season and the changes in biomass production in space and time based on vegetation index (EVI, NDVI).

The difference in the vegetation cycle of the plants on the arable land and the difference in the land use and land cover (LU/LC) are clearly visible in the values of EVI and NDVI. The statistical and spatial index differences between the affected and non-affected areas of sludge disposal are generally not significant in the short term. It can be seen differences in the case of the sunflower and maize biomass products. These can be assessed as the effect of sludge disposal within 1–3 years, but continuous monitoring is required to verify this. In the case of colza and winter wheat (based on the available data) we did not find similar effects, and in some cases the pre-placement EVI/NDVI values were higher.

Vegetation indices heterogeneity among the parcels is also well patterned spatially in the quadrates. The spatial heterogeneity characteristic of the quadrates was not changed by the sewage sludge disposal over the study period. Geometric resolution and monitoring can be used to map a former alluvial form, which is an important factor in understanding parcel yield changes.

We can emphasize the accuracy of EVI evaluation in the dense vegetation period and its applicability in a comparative analysis. NDVI may be more sensitive in the dynamics of smaller or sparse vegetation, or sometimes in the observation of variability characteristic of rich vegetation. It is interesting, that the difference between NDVI and EVI is smaller in areas treated with sewage sludge. LANDSAT data are generally closely related to the Sentinel-based indices values and confirm the results of their evaluation, but they cannot supplement the study on their own due to the significant differences on the parcels at certain times.

In addition to the change of agricultural management, in the detection of significant differences, it is appropriate to measure the data for the following years, that can help to narrow down the data deficient periods; monitoring for 2020 is in progress.

Open access

A talaj elektromos vezetőképessége és a termőhelyi zónák talajtulajdonságai közötti összefüggések

Correlations between soil conductivity and soil properties of crop management zones

Agrokémia és Talajtan
Authors: Kocsis Mihály, Menyhárt László, Benő András És, and hermann Tamás

Vizsgálatunk célja az volt, hogy egy Somogyban elhelyezkedő, dombvidéki mintaterület szántóin elemezzük a mért talaj-vezetőképesség (EC) értékek és lehatárolt termőhelyi (művelési) zónák talajtulajdonságai közötti összefüggéseket. A vizsgált szántóterületek löszön kialakult, típusos Ramann-féle barna erdőtalajon és karbonátos csernozjom barna erdőtalajon helyezkednek el. Feltalajuk döntően vályog és agyagos vályog fizikai féleségű. A talaj vezetőképességét 50 és 100 cm-es talajmélységben mértük.

A mintaterület talajadatait térinformatikai állományba foglaltuk, az adatok rendezését és azok összekapcsolását az ESRI ArcGIS 10.0 programmal végeztük el. A táblák heterogenitását mutató laboratóriumi talajvizsgálatok eredményeit a mért EC értékekkel összevetettük, amelyhez az IBM SPSS Statistics 20 szoftver segítségével stepwise-típusú lineáris regressziót alkalmaztunk. A regressziókat a talajvizsgálatok csoportosításával megegyezően: alap („a” eset), bővített („b” eset) és teljeskörű („c”eset) alapján futtattuk le. A számításoknál az „a” eset a talajtulajdonságokat meghatározó fontosabb talajparaméterek (kötöttség, humusz- és mésztartalom, kémhatás), a „b” eset az alap talajparamétereket és a makro tápanyagok (NPK ellátottságot), valamint a „c” eset az előző kettőt és mikro tápanyagok (Mg2+, Na+, Zn2+, Cu2+, Mn2+, SO4 2–, Fe2+ + Fe3+) körét jelenti.

A különböző csoportosításban elvégzett elemzések során arra voltunk kíváncsiak, hogy a vizsgálati talajparaméterek körének változtatásával szorosabb kapcsolatokat találunk-e a mért átlagos EC értékek és a talajtulajdonságok között. Az eredményeink által kaphatunk-e olyan kellő pontosságú és megbízhatóságú becslőmodellt, amely a talajok térbeli heterogenitását megmutatja az EC értékek alapján, így a módszer nagyban meggyorsíthatja és leegyszerűsítheti a „hagyományos” talajvizsgálatokhoz képest a termőhelyi zónák elkülönítését.

A vizsgálati eredményeink alapján elmondható, hogy mindhárom regressziós csoportosítás esetén a tengerszint feletti magasság csökkenésével arányosan nő a talaj-vezetőképesség, illetve az EC értékek növekedésével nő a talajok kötöttsége, amellyel együtt növekszik az agyagtartalom is. Ez a folyamat 100 cm-es talajmélységben a nagyobb víztartalom miatt erőteljesebben jelentkezik, mint az 50 cm-es talajmélységben. A termőhelyi zónák termékenységi viszonyait az elsődleges talajtulajdonságokon, illetve a makro és a mikro tápanyag-ellátottságokon kívül a domborzati viszonyok is módosíthatják. A talajellenállás mérése bárki számára elérhető, gyors és egyszerű módszer. A laboratóriumi talajvizsgálatokat kiegészítve alkalmas arra, hogy a precíziós növénytermesztésben segítséget nyújtson a termőhelyi zónák lehatárolásában.

Our aim was to analyse the relationships between the measured soil electrical conductivity (EC) and the soil properties of different delimited production (tillage) zones in a hillside sample area situated in Somogy county. The examined arable lands are situated in typical Ramann-type brown forest soil and chernozem-brown forest soil mostly with loam and clay loam formed on loess. For the investigations, two soil resistance values (measured at 50 cm and 100 cm depth) were used.

Soil data of the sample area were incorporated into a GIS file, the ordering and connection of the data was performed by ESRI ArcGIS 10.0 program. The results of the soil laboratory tests (which show soil heterogeneity) were correlated to the measured EC-values with stepwise linear regression using IBM SPSS Statistics 20 software. The regression were run in line with the alignment of soil investigations: basic (case „a”), extended (case „b”) and completed (case „c”). By the calculations, case „a” means the group of the most important soil parameters which are determinative soil characteristics (upper limit of plasticity or KA, humus-, lime content, pH), case „b” means the previous one plus the group of macronutrients (NPK-content), while case „c” means case „b” plus the group of micronutrients (Mg2+, Na+, Zn2+, Cu2+, Mn2+, SO4 2–, Fe2+ + Fe3+).

With the analyses made in different alignments our aim was to determine whether with the changing of examined soil parameters there will be tighter relationships between the measured EC-values and soil properties. Further aim was to examine whether it is possible to make a properly accurate and reliable estimation model, which can show the real soil circumstances (spatial heterogeneity of soils) based on EC-values, since this method can accelerate and simplify the separation of productivity zones compared to the conventional soil examinations.

Based on the results it can be concluded that in case of all the three regression groups the electrical conductivity increases proportionally with the decreasing of elevation. Besides, with the increasing of EC-values the KA – and with it, the clay content also – increases. This process develops in a more significant way in the depth of 100 cm than in 50 cm because of the higher water content. Besides the primary soil characteristics and the amount of macro- and micronutrients, the fertility conditions of the production zones can be affected by the geographical circumstances as well. The measurement of soil resistance is a fast, easy and generally available method, which is suitable – with the completion of laboratory examinations – for giving assistance to delineate the production zones in the precision crop production.

Open access

A talajok aggregátum-stabilitásának vizsgálati lehetőségei I. Makroaggregátum-stabilitás

Determination of soil aggregate stability I. Macro-aggregate stability

Agrokémia és Talajtan
Authors: Labancz Viktória, Barna Gyöngyi, Szegi Tamás, and Makó András

A makroaggregátumok stabilitásának meghatározására számos mérési módszer és értékelési lehetőség létezik. Ezek önállóan eredményesen alkalmazhatók az aggregátumok stabilitásának vizsgálatára (valamilyen romboló hatást megpróbálnak szimulálni, valamilyen körülményt megpróbálnak standardizálni stb.), ám ezek a módszerek egymással nehezen összevethetők. Az évek során jogosan merült fel a szabványosítás igénye, ám a kialakult nemzetközi szabvány módszertana igen bonyolult, éppen ezért csak kevesen kívánják azt alkalmazni. Hasonló a helyzet a különféle stabilitási mutatók esetében is: sokféle mutató használatos, ezek különkülön jól jellemezhetik a talajok aggregátum-stabilitását, de a mutatók párhuzamos használata több esetben eltérő stabilitási sorrendet eredményez a különféle talajoknál. Megfelelő megoldás lehetne, ha definiálni tudnánk, hogy mely módszer és mely mutató pontosan mit is fejez ki és mikor, milyen probléma vizsgálatakor, mely mutatót és mely módszert kívánatos alkalmazni. Kutatásainkat a továbbiakban ilyen irányban is folytatni kívánjuk.

There are several measurement and evaluation methods for determining the stability of macro-aggregates. These can be used effectively independently to test the stability of aggregates (attempting to simulate some destructive effect, attempting to standardise some condition, etc.), but they are difficult to compare to each other. Over the years, the need for standardization has rightly arisen, but the standard method developed is very complicated, which is why few people want to apply it.

Similarly, many different indicators are used, each of which can give a good characterisation of the aggregate stability of soils, but the parallel use of indicators often results in different stability rankings for different soils. An appropriate solution should be defined which method and which indicator expresses what exactly and when, and which indicator and which method should be used for which problem. We intend to continue our research in this direction.

In this manuscript we summarized the main macro-aggregate stability measurements and indices, reviewed the international and Hungarian scientific literature.

Open access

Abstract

Sustainable chemistry established one of kind standards to maintain protection of environment through using safer mobile phase composition and/or lower solvent consumption. A fast green micellar HPLC method was developed and applied for the first time aiming at simultaneous determination of chlorpheniramine maleate, one of the most widely used antihistamine in combination with levochlopersatine fenodizoate or dextromethorphan hydrobromide or dexamethasone, in their pure forms, laboratory prepared mixtures and pharmaceutical dosage forms used in alleviating the symptoms of cough resulting from common colds and allergy. The separation was achieved on Kinetex C18 column (100 mm × 4.6 mm i.d., 2.6-μm particle size) using micellar aqueous mobile phase consisting of (30 mM sodium dodecyl sulfate and 50 mM sodium dihydrogen phosphate, pH 5) and ethanol (85:15) with UV detection at 230 nm. The four drugs were successfully separated using isocratic elution in a single run not exceeding 7 min. According to ICH guidelines, the method was confirmed to be linear, accurate and precise over the concentration ranges of 5–60 μg mL−1 for chlorpheniramine maleate, 10–100 μg mL−1 for levocloperastine fenodizoate and dextromethorphan hydrobromide and 5–30 μg mL−1 for dexamethasone. In addition, the greenness of the developed method was assessed using two different tools indicating their least hazardous effect on the environment.

Open access

Abstract

Tramadol, a strong pain killer known for its addictive problems is either co-administrated or co-formulated with other analgesics or muscle relaxants. The power of fluorescence detection in HPLC is tested to resolve such mixtures in plasma matrix to reach the required sensitivity with simple sample treatment using just protein precipitation. The aim of this work was to develop an eco-friendly and sensitive HPLC method with fluorimetric detection for analysis of Tramadol in its two binary mixtures with Ibuprofen (mixture 1) and Chlorzoxazone (mixture 2) in two combined dosage forms and spiked plasma. Separation was done using a C18 column with mobile phase of acetonitrile and water (pH 3.5) in gradient elution and 1 mL/min flow rate. Detection was carried out with λ excitation/λ emission of 220 and 307 nm, respectively. The method was applied to detect the two binary mixtures in real plasma samples after invivo application to rats, to assure that the drugs’ metabolites do not affect the sensitivity or selectivity of the assay. Evaluation of greenness of the proposed method was done using semi-quantitative Eco‐Scale and new Green Analytical Procedure Index which showed that this method can be a greener alternative with higher sensitivity for analysis of both mixtures. The method (15 min-assay) was linear over concentrations of 0.1–10 μg/mL and 0.1–33 μg/mL in plasma. In addition, the proposed method was validated per ICH as well as FDA bioanalytical methods’ validation guidelines.

Open access

Abstract

Virtual reality (VR) offers a new instrument for food scientists to evaluate different aspects of food products. The possible applications range from product design testing, evaluation of the labels, effects of different placements or the evaluation of store layouts. These analyses help us to get a deeper understanding of consumers' minds. Additionally, VR can be coupled by several different tools (e.g. eye-trackers or skin conductance sensors or even electroencephalographs). However, as there have been only a limited number of applications published, there are several open questions which need to be answered. In the presented paper the authors aim i) to introduce the current knowledge on VR applications in food science by introducing several fields of applications and ii) to point out the most important questions regarding the applications of VR in food science.

Open access

Abstract

Triclabendazole is one of the main drugs used to treat liver fluke in livestock. A rapid LC-MS/MS method was developed and validated to determine ovine plasma levels of triclabendazole sulfoxide.

A Gemini NX-C18 column was used to achieve analytical separation, with gradient elution of a mobile phase composed of 0.1% formic acid in acetonitril and 0.1% formic acid in water at flow rate of 0.6 mL/min. MRM with positive ESI ionization was used for the detection of triclabendazole sulfoxide (m/z 360.10 from m/z 376.97). Fenbendazole was used as internal standard. Plasma protein precipitation with acetonitrile was used for sample processing.

The method was validated with regards to selectivity, linearity (r > 0.9939), within run and between run precision (CV < 8.9%) and accuracy (bias < 8.9%) over the concentration range 1–100 µg/mL plasma.

The method developed is simple, selective and can be applied in bioequivalence and bioavailability studies.

Open access

Abstract

A simple, rapid, efficient and reproducible method based on High Performance Liquid Chromatography (HPLC) for simultaneous determination of prodrug of voriconazole (POV) and voriconazole in beagle plasma has been established and validated. Omeprazole was utilized as the sole internal standard. Analytes and internal standards were extracted through protein precipitation and separated on a Venusil XBP C18 chromatography column (4.6 × 250 mm, 5 µm). The mobile phase was methanol and 20 mmol/L potassium dihydrogen phosphate. Chromatographic separation was achieved by using an isocratic elution procedure that used 65% methanol and a flow rate of 1 mL/min. The ultraviolet (UV) detection wavelength was 256 nm and the total running time was 15 min. This method showed good linear ranges of 100–75,000 ng/mL for voriconazole prodrug and 200–100,000 ng/mL for voriconazole respectively. The precision and accuracy were acceptable. Analytes in plasma samples are stable under different temperatures and storage conditions. The developed HPLC method has been successfully applied to the studies of toxicokinetics of POV after intravenous drip in beagle and provided important information for the further development and application.

Open access

Abstract

Eight 17β-carboxamide glucocorticoids with local anti-inflammatory activity were selected and their retention behavior tested in six RP-HPLC systems (I–VI). logkw, a, and φ 0 parameters were calculated and correlation with previously determined logPo/w values was examined. RP-HPLC system IV, which consisted of cyano column and methanol–water mobile phases (50:50, 60:40, 70:30, and 80:20, v/v), was selected as the most reliable for lipophilicity prediction and used for the analysis of chromatographic behavior of remaining fourteen 17β-carboxamide glucocorticoids. Quantitative structure-retention relationships analysis was performed and PLS(logkw) model was selected as the most statistically significant. On the basis of selected model and interpretation of corresponding descriptors, new derivatives with higher logkw values and higher expected lipophilicity were designed.

Open access

Land use change may modify key soil attributes, influencing the capacity of soil to maintain ecological functions. Understanding the effects of land use types (LUTs) on soil properties is, therefore, crucial for the sustainable utilization of soil resources. This study aims to investigate the impact of LUT on primary soil properties. Composite soil samples from eight sampling points per LUT (forest, grassland, and arable land) were taken from the top 25 cm of the soil in October 2019. The following soil physicochemical parameters were investigated according to standard protocols: soil organic matter (SOM), pH, soil moisture, NH4 +–N, NO3 –N, AL-K2O, AL-P2O5, CaCO3, E4/E6, cation exchange capacity (CEC), base saturation (BS), and exchangeable bases (Ca2+, Mg2+, K+, and Na+). Furthermore, soil microbial respiration (SMR) was determined based on basal respiration method. The results indicated that most of the investigated soil properties showed significant difference across LUTs, among which NO3 –N, total N, and K2O were profoundly affected by LUT (p ≤ 0.001). On the other hand, CEC, soil moisture, and Na+ did not greatly change among the LUTs (p ≥ 0.05). Arable soils showed the lowest SOM content and available nitrogen but the highest content of P2O5 and CaCO3. SMR was considerably higher in grassland compared to arable land and forest, respectively. The study found a positive correlation between soil moisture (r = 0.67; p < 0.01), Mg2+ (r = 0.61; p < 0.01), and K2O (r = 0.58; p < 0.05) with SMR. Overall, the study highlighted that agricultural practices in the study area induced SOM and available nitrogen reduction. Grassland soils were more favorable for microbial activity.

Open access

Abstract

New, sensitive, rapid, cost-effective, and validated stability-indicating thin layer chromatographic (TLC) method coupled with fluorescence (FL) detection was developed for the quantitative analysis of celecoxib (CEL) and amlodipine besylate (AMLO) in their laboratory prepared binary mixture using the non-fluorescent TLC silica gel 60 plates. Ethyl acetate: diethylamine: 1-propanol (9:1:0.2, V/V) was used as a developing system. The retention factor (Rf) for each drug was 0.80 ± 0.03 and 0.44 ± 0.01 for CEL and AMLO, respectively. The plates were excited at 264 nm for the simultaneous FL measurement of CEL and AMLO, the calibration curves were linear over a concentration ranges of 30.0–300.0 ng/band and 15.0–150.0 ng/band with mean percentage recoveries of 99.80 ± 0.85 and 99.80 ± 0.77 For CEL and AMLO, respectively. The developed method was applied for the stability studies of the cited drugs in their laboratory prepared binary mixture and the forced degradation products were determined when present in presence of the pure drugs so the method can be considered as a stability-indicating one and it was validated as per ICH guidelines and proved to be accurate and precise.

Open access

Abstract

Rauwolfia tetraphylla L., is an important medicinal plant in Apocynaceae family and is recognized as an alternative source to Rauwolfia serpentina L., in terms of anti-hypertensive alkaloid production i.e. reserpine. In view of this, the present study is conducted to estimate the reserpine content in different parts (leaf, stem and root) of field grown plants (2 years old), tissue cultured plantlets (R1) (two months old) and cell suspensions cultures (two months old with and without precursor feeding) of R. tetraphylla by using high performance liquid chromatography (HPLC) technique. Overall maximum content of reserpine (in %) was estimated from the root samples. Roots of field grown plants has recorded high percent of reserpine (0.39%) followed by roots of tissue cultured plantlets (0.35%) and root callus based cell suspension cultures (0.38 %) which was fed with precursor amino acid (100 mg/L of tryptophan). In control type of root callus based cell suspension cultures, reserpine content was quantified as 0.14%; by precursor feeding (100 mg/L of tryptophan) it was enhanced to 0.38%. In conclusion, the reserpine content (0.35 and 0.38%) produced by the roots of tissue cultured plantlets (R1) and 100 mg/L tryptophan fed root callus based cell suspensions was comparable to that of the reserpine content (0.39%) of root parts of field grown plants. The present study demonstrates the reserpine production by in vitro cell suspension cultures throughout the year without sacrificing the medicinal plants.

Open access
Acta Chromatographica
Authors: Steven Yeung, Quanlan Chen, Yongbang Yu, Bingsen Zhou, Wei Wu, Xia Li, Ying Huang, and Zhijun Wang

Abstract

Ganoderma lucidum (GL), also known as Reishi or Lingzhi, is a medicinal mushroom widely used in traditional and folk medicines. The extracts made from the fruiting body and spore of naturally grown GL are the most frequently used in commercial products. More than 400 compounds have been identified in GL with the triterpenoids considered to be the major active components. Large variations in the chemical components were reported in previous studies and there is no comprehensive study of the content of multiple major triterpenoids in the GL product. In addition, there is no report in the comparison of chemical profiles in different parts of GL (i.e., fruiting body and spore). Determining the chemical composition and comparing the differences between fruiting body and spore are essential for the identity, efficacy and safety of various GL products.

In this study, 13 compounds (ganoderenic Acid C, ganoderic Acid C2, ganoderic Acid G, ganoderic Acid B, ganoderenic Acid B, ganoderic Acid A, ganoderic Acid H, ganoderenic Acid D, ganoderic Acid D, ganoderic Acid F, ganoderic Acid DM, ganoderol A, and ergosterol) were selected as the chemical markers. The purpose of this study is to develop an HPLC-DAD fingerprint method for quantification of these active components in GL (spore and fruiting body) and test the feasibility of using the HPLC-DAD fingerprint for quality control or identity determination of GL products.

The results showed that this method could determine the levels of the major components accurately and precisely. Among the 13 components, 11 ganoderma acids were identified to be proper chemical markers for quality control of GL products, while ganoderal A was in a very low amount and ergosterol was not a specific marker in GL. The extracts of fruiting body contained more chemical compounds than those of spore, indicating that these 11 compounds could be a better chemical marker for the fruiting body than the spore. The HPLC chemical fingerprint analysis showed higher variability in the quality of GL harvest in different years, while lesser variation in batches harvested in the same year.

In conclusion, an HPLC assay detecting 11 major active components and a fingerprinting method was successfully established and validated to be feasible for quality control of most commercial GL products.

Open access

Abstract

Narciclasine is a 7-hydroxy derivative of lycorisidine. It was the first alkaloid isolated from the stem of narcissus (Amaryllidaceae) in 1967. Six mice were given narciclasine (5 mg/kg) by intravenous administration. A UPLC-MS/MS method was developed to determine narciclasine in mouse blood. Tectorigenin (internal standard, IS) and narciclasine were gradient eluted by mobile phase of methanol and 0.1% formic acid in a BEH C18 column. The multiple reaction monitoring (MRM) of m/z 308.1→248.1 for narciclasine and m/z 301.1→286.0 for IS with an electrospray ionization (ESI) source was used for quantitative determination. The calibration curve ranged from 1 to 6,000 ng/mL. The accuracy was from 92.5 to 107.3%, and the matrix effect was between 103.6 and 107.4%. The developed UPLC-MS/MS method was successfully applicated to a pharmacokinetic study of narciclasine in mice after intravenous administration (5 mg/kg).

Open access

Abstract

This paper is aimed at developing a gradient elution reversed-phase high-performance liquid chromatography (RP-HPLC) method for the separation of a complex mixture composed of ivabradine and its eleven impurities, in a reasonable timeframe. In order to obtain a robust and reliable HPLC method for separation of this mixture, Analytical Quality by Design (AQbD) was applied. This approach demonstrated to be useful in development of a long lasting life cycle methods. Four chromatographic variables were defined as key method parameters (KMPs) and optimized towards the analytical target profile (ATP). Designated KMPs were initial and final amount of acetonitrile in the mobile phase, pH value of the aqueous phase and gradient time, while resolutions of critical peak pairs were denoted as critical method attributes (CMAs). Relationships between KMPs and CMAs were obtained with the aid of Design of Experiments (DoEs) methodology among which Box-Behnken design (BBD) was employed to gain valid mathematical models. Obtained mathematical equations were used to construct the Design Space (DS) and select reliable optimal separation conditions. They included 11% (v/v) and 34% (v/v) of initial and final amount of acetonitrile, respectively, as well as 45 min of gradient elution time and 20 mM ammonium acetate as aqueous mobile phase with pH set to 7.35. The possibility to separate the diastereoisomers of impurity X was also evaluated. It was demonstrated that this separation could not be achieved in gradient elution mode within the defined variable domains and in a reasonable time span. The developed method was validated according to ICH Q2 (R1) guideline and met all the required criteria.

Open access

Abstract

A rapid, sensitive and convenient method based on ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was developed and validated for the simultaneous quantification of calycosin-7-O-β-d-glucoside (CCSG), ononin, calycosin, (6aR,11aR)-9,10-dimethoxypterocarpan-3-O-β-d-glucopyanoside (DPPG), and 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan-7-O-β-d-glucopyanoside (DIFG) in rat plasma after oral administration of the methanol extraction from Radix Astragali. Theophylline played the role of internal standard (IS). Preparation of plasma samples by liquid-liquid extraction method with ethyl acetate after precipitation of protein with methanol. The analytes were detected with a triple quadrupole tandem mass spectrometery (MS) in multiple reaction monitoring (MRM) mode and a positive ion electrospray ionization (ESI). The method was validated with the concentration ranges of 1.96–62.69 ng/mL for CCSG, 1.70–54.5 ng/mL for ononin, 1.85–59.06 ng/mL for calycosin, 2.14–137.24 ng/mL for DPPG and1.96–125.25 ng/mL for DIFG, respectively. The method had the lower limit of quantification (LLOQ) with 0.49, 0.21, 0.92, 1.07, and 0.98 ng/mL for CCSG, ononin, calycosin, DPPG and DIFG respectively, and the precision less than 10%. The RSD of the accuracy was in the range of −4.35–8.91%. The results may be helpful to provide more accurate references to clinical application of this herb.

Open access

Abstract

A rapid and simple UPLC-MS/MS method was developed to determine toddalolactone in mouse blood and applied to measure the pharmacokinetics of toddalolactone in mice. Blood samples were first preprocessed by ethyl acetate liquid-liquid extraction. Oxypeucedanin hydrate (internal standard, IS) and toddalolactone were gradient eluted from a UPLC BEH C18 column using a mobile phase consisting of acetonitrile and water (0.1% formic acid). Using electrospray ionization (ESI) as the ionization source, multiple reaction monitoring was used to detect the precursor and product ions of m/z 309.2 and 205.2, respectively, for toddalolactone and of m/z 305.1 and 203.0 for IS, respectively, for quantitative detection. A calibration curve was run over the concentration range of 5–4,000 ng/mL (r > 0.995). The matrix effects ranged from 93.5 to 98.4%, and the recovery was higher than 77.3%. The precision was less than 13%, and the accuracy ranged from 90.9 to 108.4%. The developed UPLC-MS/MS method was successfully used for measuring the pharmacokinetics of toddalolactone in mice after oral (20 mg/kg) and intravenous administration (5 mg/kg), and the absolute bioavailability of toddalolactone was 22.4%.

Open access

Abstract

Bao-Yuan Decoction (BYD), a widely used traditional Chinese medicine formula, is worth developing into modern dosage forms. To assess the quality of traditional decoction, the commonly used ultra-performance liquid chromatography coupled with diode array and evaporative light scattering detection (UPLC-DAD/ELSD) method was initially applied to develop the analytical methods for the qualitative fingerprints and simultaneous quantitation of multiple marker compounds in BYD. Based on 16 batches of BYD prepared from multiple batches of qualified crude herbs combined randomly, the characteristic fingerprints were generated, with 41 and 19 common peaks detected by DAD and ELSD, respectively. Furthermore, ginsenosides Re, Rg1 and Rb1, calycosin-7-glucoside, calycosin, liquiritin, isoliquiritin apioside, isoliquiritin, glycyrrhizic acid and cinnamic acid were qualified as marker compounds to represent the herbs composing the formula. The characteristic fingerprints and the content ranges of multiple batches of the decoction were obtained, thus providing guidance for the quality control of modern dosage forms. The combination of these qualitative and quantitative methods will be an effective operational measure by which to evaluate and control the quality of BYD from traditional decoction to modern dosage forms.

Open access
Acta Chromatographica
Authors: Dżastin Zimny, Michał Patrzałek, Teresa Kowalska, Mieczysław Sajewicz, Kinga Surmiak-Stalmach, and Grażyna Wilczek

Abstract

This is the first study on composition of fatty acids in hunting web of Steatoda grossa (Theridiidae) spiders and one of only four similar studies ever made. Its main contribution is a discovery that fatty acids not only cover an outside of the web fibers, but they are even more abundantly represented in the fibers’ inner structure. Although little attention has been so far attributed to the contents of fatty acids in spider silks, one has to remember that their biocompatibility combined with an extraordinary tensile strength make them a worth investigating template for material bioengineering studies.

Open access

Abstract

In this study, a new microextraction method based on hydrophobic deep eutectic solvents was developed for the extraction and preconcentration of organophosphorus pesticides from beverage samples. The hydrophobic deep eutectic solvents were synthesized from choline chloride and 4-chlorophenol. Main experimental parameters of the microextraction method were investigated to improve the extraction efficiency. The proposed method achieved a satisfactory linear range between 50 and 2,000 μg L−1 with coefficient of determination greater than 0.9939. The extraction recoveries and enrichment factor of five organophosphorus pesticides at three added levels ranged from 71.68 to 113.18% and 71.43–111.11 were obtained with the acceptable relative standard deviation ranged from 1.37 to 11.92%. Limits of detection and quantification were found to be 0.05–0.3 μg L−1 and 0.17–1 μg L−1, respectively. Finally, the methods were successfully applied for the determination of five organophosphorus pesticide in orange juice and green tea.

Open access

Abstract

A new and rapid hydrophilic interaction liquid chromatographic method has been developed for the quantitative analysis of amlodipine besylate and its specific impurities (D, E, and F). For development of this method, a systematic approach which includes Design of Experiments methodology was applied. For the method optimization, Box–Behnken design and specific way Derringer's desirability function were applied. They provided identification of the optimal chromatographic conditions on the basis of obtained mathematical models and graphical procedures (three D graphs). The optimal chromatographic conditions were the analytical column ZORBAX NH2 (250 × 4.6 mm, 5 µm particle size); mobile phase consisted of acetonitrile-water phase (50 mM ammonium acetate, pH adjusted to 4.0 with glacial acetic acid) (90.5:9.5 v/v); column temperature 30 °C, mobile phase flow rate 1 mL min−1, wavelength of detection 230 nm. As other validation parameters were also found to be suitable, the possibility to apply the proposed method for the determination of amlodipine besylate and its impurities in any laboratory under different circumstances has been proven.

Open access

Abstract

Pharmaceuticals which are widely used in aquatic can easily migrate into the environment and aquatic animals, and can increase the risk of drug resistance and allergic symptoms if consumed by humans. In order to achieve high-throughput analysis of pharmaceuticals with different physical and chemical properties from complex matrices, we developed a new method for various types pharmaceuticals in fish and shrimp tissue. Series solid-phase extraction (s-SPE) with different adsorbents was selected for extracting and purifying analytes with different paddings. s-SPE were combined with ultra performance liquid chromatography triple quadruple tandem mass spectrometry (UPLC-MS/MS) for the detection of 30 pharmaceuticals antibiotics in fish samples. This method was stabilized and reliable to determinate the pharmaceuticals in fish and shrimp samples. As the method combined multiple Chinese national standards method, it could be easily treat the multi-pharmaceuticals from the fish and shrimp samples once time. It provided for both quantitative and qualitative methods and they could be applied to single- or multi-residue methods.

Open access

Abstract

In this study, a simple, fully validated and rapid reversed-phase HPLC with photodiode array detector method was developed for the simultaneous determination of 11 selected phenolic antioxidants over 33 min in personal care and food samples containing extracts of green apple, pomegranate (Ponica granatum) and argan oil (Argania spinosa). The method was performed using NUCLEODUR C18 column 5 µm particle size and 12.5 cm length. The HPLC mobile phase was prepared as follows, solution A: 1% aqueous acetic acid and solution B: Acetonitrile. The method was gradient at flow rate 1.0 mL/min with a simple mobile phase, minimal sample preparation, and diminished organic solvent usage (3% acetonitrile for almost 90% of the run time). The detection was carried out at 278 nm. The method presented good precision and accuracy with RSD% values ranged between 0.33 and 1.94% and wide linear range. The developed method was successfully applied on 67 personal care and food products present in Egyptian market and can be used for routine screening in laboratory for the regular quality control of the antioxidant content for products containing the mentioned extracts.

Open access

Abstract

The enzymatic conversion of sucrose to fructo-oligosaccharides (FOS) catalyzed by Pectinex Ultra SP-L, a commercial enzyme preparation from Aspergillus aculeatus, under free condition was studied. A mathematical analysis of the transfructosylation reactions was carried out to estimate the dynamic and steady-state performance of an enzyme membrane reactor (EMR) and to compare the continuous production scheme with the traditional batch process realized in stirred-tank reactor (STR). Kinetic parameters were identified simultaneously from a series of progress curves obtained from STR and EMR experimental runs. Model estimates appeared to fit well to experimental observations under the studied reaction conditions. Although conventional batch reactor outperforms EMR in terms of conversion, EMR compares favorably regarding productivity. The on-site industrial implementation of this technology might be attractive for food manufacturers aiming at utilizing a value-added sweetener mixture with prebiotic properties.

Open access
Progress in Agricultural Engineering Sciences
Authors: V. Parrag, Z. Gillay, Z. Kovács, A. Zitek, K. Böhm, B. Hinterstoisser, R. Krska, M. Sulyok, J. Felföldi, F. Firtha, and L. Baranyai

Abstract

One of the most important food safety issues is the detection of mycotoxins, the ubiquitous, natural contaminants in cereals. Hyperspectral imaging (HSI) is a new method in food science, it can be used to predict non-destructively the changes in composition and distribution of compounds. That is why, in the last decade, the potential of HSI has been evaluated in many fields of food science, including mycotoxin research.

The aim of the recent study was to test the feasibility of HSI for the differentiation according to the toxin content of cornmeal samples inoculated with Fusarium graminearum, Fusarium verticillioides and Fusarium culmorum and samples with natural levels of mycotoxins. Samples were measured in the near infrared wavelength range of 900–1,700 nm and mean spectra of selected regions of interest of each image were pre-treated using Savitzky-Golay smoothing and standard normal variate (SNV) method. On the spectra, partial least squares discriminant analysis (PLS-DA) was carried out according to the level of contamination. Partial least squares regression (PLSR) method was used to predict deoxynivalenol (DON) content of samples and the cumulative toxin content: the sum of fumonisins (FB1, FB2) and DON content of samples. Based on the promising results of the study, HSI has the potential to be used as a preliminary testing method for mycotoxin content in feed materials.

Open access

Abstract

Schizonepeta tenuifolia Briq. (ST) has been used as an aromatic exterior-releasing medicine in clinical practice for thousands of years in China. Previous researches have revealed both volatile oil (STVO) and aqueous extract (STAE) from ST showed significant pharmacological activities, such as anti-virus, anti-inflammation, anti-oxidation, and immunoregulation. However, the influence between each other was still unknown. The purpose of this study was to compare the pharmacokinetic profiles of three main flavonoids (luteoloside, apigetrin, and hesperidin) in STAE to illustrate the influence of STVO. A liquid chromatography-tandem mass spectrometry (HPLC-MS) method was established to quantitatively analyze the three absorbed ingredients in the plasma of healthy rats. Biological samples were analyzed on an Agilent Eclipse Plus C18 column (3.0 mm × 150 mm, 3.5 μm) with gradient mobile phase (containing 0.2% formic acid and acetonitrile) at a flow rate of 0.8 mL/min. All the analytes and quercitrin (IS) were investigated with an electrospray ionization source (ESI) using multiple-reaction monitoring (MRM) in negative ionization mode. In addition, this quantitative method showed good linearities (r ≥ 0.9995) and the lower limits of quantification were 0.590–1.19 ng/mL. The intra- and inter-day precisions ranged 3.47–10.45% and 4.29–11.28% for the three analytes. The mean extraction recoveries were in the range of 77.41–109.79% and the average matrix effects were within 83.41–112.67%. The validated method has been fully applied to compare the pharmacokinetic parameters of the three flavonoid glycosides in rat plasma after oral administration of STAE and STAE+STVO. In comparison of luteoloside, apigetrin, and hesperidin in STAE group, it was found that different degree of increasing existed for the time to reach the maximum concentration (T max), elimination half-life time (T 1/2), the area under the concentration curves (AUC0→t and AUC0→∞) and the maximum concentrations (C max) in STAE+STVO group. As can be seen from above results, STVO could improve the absorption and bioavailability of the three analytes. These findings would provide some active and strong basis of safe clinical application for ST and further exploitation for STVO from the perspective of drug–drug interaction.

Open access

Abstract

This study deals with fast pyrolysis of sawdust wood waste (SWW) at the range of temperature 300–700 °C in a stainless steel tubular reactor. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–20 °C/min, below 0.1–1.5 mm and 20–200 mL min−1, respectively. It was concluded that both the temperature and heating rate have a significant effect on both yield of bio-oil and bio-char resulting from pyrolysis of SWW. The liquid products obtained at various pyrolysis temperatures were subjected into column chromatography after removal of asphaltenes (hexane insoluble). Obtained bio-oils (maltenes or hexane soluble) were classified as aliphatic, aromatic and polar sub-fractions. The maximum of bio-oil yield of 39.5 wt% was obtained at a pyrolysis temperature of 500 °C, particle size between 0.5 and 1 mm, nitrogen flow rate (N2) of 100 mL min−1 and heating rate of 5 °C/min. Liquid product (bio-oil) obtained under the most suitable and optimal condition was characterized by elemental analysis, Nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), Fourier transformed infrared spectroscopy (FT-IR). The analysis of liquid showed that bio-oil from SWW could be a potential source of renewable fuel production and value added chemical. The yield of char generally decreases with increasing the temperature, the char yield passes from 54.61 to 29.47 wt% at the heating rate of 5 °C/min and from 50.01 to 24.5 wt% at the heating rate of 20 °C/min at the same range of temperature (300–700 °C). Solid products (bio-char) obtained in the presence of nitrogen (N2) contain a very important percentage of carbon and high heating values (HHVs).

Restricted access

Plant nutrition significantly influences yield and fruit quality in fruit orchards. In this three-year study (2016–2018), different fertilizer treatments were compared in an intensive sweet cherry orchard. Trees of cultivar ‘Carmen’ were grafted on Prunus mahaleb ‘Cema’ rootstock, and were trained to free spindle. For NP, NPK and NPKMg treatments, yield ranged between 11.8 and 16.6 kg/tree in the three years, while the yield was 9.1 kg/tree on the control trees. Crop load (fruit amount calculated to the trunk thickness) was 151–166 g cm-2 for fertilized trees, while it was 120 g cm-2 on the untreated trees. Fruit sizes of fertilized trees reached 30 mm in 2018, while the fruit sizes of control trees were smaller with 2.5 mm. Water-soluble dry matter content (%) of the fertilized trees was lower in 2016 and 2017, but higher in 2018 compared to the control plots. In 2017 and 2018, fertilizer treatments resulted in an increase of the content of phosphorus (16–70%), potassium (4–22%) and magnesium (12–43%) in the fruits compared to control plots.

Open access
Agrokémia és Talajtan
Authors: Kelemen Bettina, Füzy Anna, Cseresnyés Imre, Parádi István, Kovács Ramóna, Rajkai Kálmán, and Takács Tünde

The effects of cadmium (Cd) stress and arbuscular mycorrhizal fungus (AMF) inoculation were investigated in wheat [Triticum aestivum L. cv. TC-33] under controlled conditions. The experiments aimed to reveal what stress responses belong to the different levels of Cd load in the growth medium (0; 1; 2,5 and 5 mg Cd kg- 1 substrate). To detect the effect of Cd stress, we compared plant physiological and growth indicators measured with both in situ and destructive methods. Electrical capacitance (CR) was evaluated during the experiments as a method to indicate stress responses through of Cd-induced root system changes.

During the growth period, the photosynthetic activity (Fv/Fm), the chlorophyll content index (CCI) of the leaves, and the CR of the root-soil system were monitored in situ. After harvest, the membrane stability index (MSI), the cadmium and phosphorus concentrations of the plants, the root dry mass (RDM), the shoot dry mass (SDM) and the leaf area (LA) were measured. The root colonization of AM fungi was estimated by microscopic examination. Data matrices were evaluated with principal component analysis (PCA) which had been proved to be a good statistical method to the sensitivity between measurement methods.

Taking all parameters into account in the PCA, a complete separation was found between the contaminated and non-contaminated variants along the main component PC1. The measured values of the Cd1 treatment sometimes overlapped with that of control plants, but differed from that of the Cd2 and Cd3 doses. The parameters well reflected that AMF inoculation alleviated the stress caused by Cd. PCA shows a visible effect of AM, but the separation between mycorrhizal and non-mycorrhizal plants is weaker than that between Cd contaminated and non-treated ones. The Cd stress significantly decreased the Fv/Fm, CCI, CR, SDM, RDM and LA. The CR and growth parameters proved to be the best indicators to characterize the Cd phytotoxicity in the TC-33 wheat cultivar.

Open access
Restricted access