A hétköznapok során gyakran előfordul, hogy gyengén teljesítünk egy olyan helyzetben, amelyben korábban már bizonyítottuk tudásunkat. A pszichológián belül elméleti és empirikus eredmények is alátámasztják ezt a hétköznapi jelenséget, mely szerint egy adott időpontban mérhető teljesítmény (performancia) nem feltétlenül tükrözi hűen a mögötte álló tudást (kompetencia). Jelen rövid, célzott összefoglaló tanulmánnyal az a célunk, hogy felhívjuk a fi gyelmet a performancia-kompetencia disszociációra a procedurális tanulás területét használva példaként. Fontos azonban kiemelni, hogy ez a jelenség más kognitív funkciók esetén is jelen lehet (pl. nyelvi teljesítmény, döntéshozatal, észlelés), ezért tanulmányunk új kutatásokat ösztönözhet számos kognitív funkció esetén. A korábbi empirikus eredmények áttekintésekor külön hangsúlyt fektetünk a tanulás idői faktoraira, amelyek meghatározhatják, hogy disszociáció lép-e fel adott esetben a performancia és kompetencia között vagy nem. Ezután kitérünk azokra az elméleti magyarázatokra is, amelyek az idői faktorok tanulásra, illetve performancia-kompetencia disszociációra kifejtett hatását próbálják magyarázni. A tanulmány végén kitekintést nyújtunk a disszociáció kutatásmódszertani vonatkozásaira és olyan alkalmazott helyzetekre is, ahol ez a disszociáció jelentősen befolyásolhatja a levont következtetéseket: ilyen például az oktatási-tanulási környezet (készségtanulás, nyelvtanulás), illetve a kognitív tesztek használata a klinikai diagnosztikában.
It often occurs in our daily life that we perform weaker in a task in which we have previously shown good knowledge and understanding. In psychology, both theoretical and empirical evidence supports this phenomenon: that is, on certain occasions, our momentary performance does not accurately refl ect our underlying knowledge (competence). The aim of our short, focused review paper is to draw attention to this performance vs. competence dissociation using the fi eld of procedural learning as an example. It is important to note, however, that this phenomenon may occur for a wide range of cognitive functions (e.g., aspects of language performance, decision-making, perception), and therefore, our paper can stimulate research in these areas. In this paper, we review previous empirical fi ndings that focused on the role of temporal factors in procedural learning as these factors can affect whether or not dissociation occurs in a certain case. Then, we briefl y present the explanatory accounts of the role of the temporal factors in learning and in performance vs. competence dissociation. Finally, our review discusses the implications of the presented fi ndings both from a methodological and an applied perspective, highlighting that the dissociation between performance and competence can substantially alter the outcomes and our interpretations in various situations such as in education (e.g., skill learning, language learning) and when applying cognitive tests in clinical settings.
Altmann, E. M. (2009). Evidence for temporal decay in short-term episodic memory. Trends in Cognitive Sciences, 13(7), 279.
Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: the role of age and speed of stimulus presentation. Developmental Science, 14(3), 464–473.
Armstrong, B. C., Frost, R., & Christiansen, M. H. (2017). The long road of statistical learning research: past, present and future. Philosophical Transactions of The Royal Society B Biological Sciences, 372(1711), 20160047.
Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology: General, 133(1), 83.
Barrouillet, P., De Paepe, A., & Langerock, N. (2012). Time causes forgetting from working memory. Psychonomic Bulletin & Review, 19(1), 87–92.
Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin & Review, 23(4), 1250–1256.
Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539.
Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10(1), 12–21.
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755.
Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 887–899.
Burle, B., Van den Wildenberg, W., & Ridderinkhof, K. R. (2005). Dynamics of facilitation and interference in cue-priming and Simon tasks. European Journal of Cognitive Psychology, 17(5), 619–641.
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, Massachusetts: MIT Press.
Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406–416.
Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. In French, R. M., & Cleeremans, A. (Eds), Implicit Learning and Consciousness: An Empirical. Psychology Press. 1–40.
Conway, C. M. (2020). How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neuroscience and Biobehavioral Reviews, 112, 279–299.
Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defi ned by luminance and color contrast. Vision Research, 40(3), 287–299.
Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci, 19(2), 92–99.
Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343–350.
Destrebecqz, A., & Cleeremans, A. (2003). Temporal effects in sequence learning. Advances in Consciousness Research, 48, 181–214.
Dominey, P. F. (1998). Infl uences of temporal organization on sequence learning and transfer: Comments on Stadler (1995) and Curran and Keele (1993). Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 234.
Emberson, L. L., Conway, C. M., & Christiansen, M. H. (2011). Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. The Quarterly Journal of Experimental Psychology, 64(5), 1021–1040.
Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 458–467.
Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning in humans. Journal of Neuroscience, 31(37), 13157–13167.
Foster, C. M., & Giovanello, K. S. (2017). The effect of presentation rate on implicit sequence learning in aging. Memory, 25(2), 187–200.
Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory and Cognition, 22(1), 95–110.
Horoufchin, H., Philipp, A. M., & Koch, I. (2011). The dissipating task-repetition benefi t in cued task switching: Task-set decay or temporal distinctiveness? Journal of Experimental Psychology: Human Perception and Performance, 37(2), 455.
Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit learning of higher-order dependencies in serial patterns. Psychology and Aging, 12(4), 634–656. doi:
Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Yankovich, H. (2007). Event timing and age defi cits in higher-order sequence learning. Aging, Neuropsychology, and Cognition, 14, 647–668.
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513–541.
Janacsek, K., Fiser, J., & Nemeth, D. (2012). The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental Science, 15(4), 496–505. doi:
Janacsek, K., & Nemeth, D. (2012). Predicting the future: From implicit learning to consolidation. International Journal of Psychophysiology, 83(2), 213–221.
Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: correlated or complicated? Cortex, 49(8), 2001–2006.
Janacsek, K., & Nemeth, D. (2015). The puzzle is complicated: When should working memory be related to implicit sequence learning, and when should it not? (Response to Martini és mtsai). Cortex, 64, 411–412.
Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231.
Karlsen, P. J., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2010). Binding across space and time in visual working memory. Memory and Cognition, 38(3), 292–303.
Kiss, M., Nemeth, D., & Janacsek, K. (2019). Stimulus presentation rates affect performance but not the acquired knowledge—Evidence from procedural learning. bioRxiv, 650598.
Kóbor, A., Janacsek, K., Takács, Á., & Nemeth, D. (2017). Statistical learning leads to persistent memory: Evidence for one-year consolidation. Scientifi c Reports, 7(1), 760. doi:
Mechelli, A., Friston, K. J., & Price, C. J. (2000). The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience, 12(Supplement 2), 145–156.
Mercer, T., & McKeown, D. (2014). Decay uncovered in nonverbal short-term memory. Psycho-nomic Bulletin & Review, 21(1), 128–135.
Mutter, B., Alcorn, M. B., & Welsh, M. (2006). Theory of mind and executive function: Working-memory capacity and inhibitory control as predictors of false-belief task performance. Perceptual and Motor Skills, 102(3), 819–835.
Nemeth, D., & Janacsek, K. (2011). The dynamics of implicit skill consolidation in young and elderly adults. Journal of Gerontology Psychological Science, 66(1), 15–22.
Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., és tsai (2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience, 7, 318. doi:
Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, D. V., & Howard, J. H., Jr. (2010).Sleep has no critical role in implicit motor sequence learning in young and old adults. Experimental Brain Research, 201(2), 351–358. doi:
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.
Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142(7), 758.
Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: Reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134(1), 73–92. doi:
Reber, A. S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. Vol. 19. New York: Oxford University Press.
Reingold, E. M., & Merikle, P. M. (1988). Using direct and indirect measures to study perception without awareness. Perception and Psychophysics, 44(6), 563–575.
Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1355.
Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207.
Romano, J. C., Howard, J. H., Jr., & Howard, D. V. (2010). One-year retention of general and sequence-specifi c skills in a probabilistic, serial reaction time task. Memory, 18(4), 427–441. doi:
Scharlau, I. (2007). Perceptual latency priming: A measure of attentional facilitation. Psychological Research, 71(6), 678–686.
Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–218.
Schultz, W., Tremblay, L., & Hollerman, J. R. (2003). Changes in behavior-related neuronal activity in the striatum during learning. Trends in Neurosciences, 26(6), 321–328.
Schweickert, R., & Boruff, B. (1986). Short-term memory capacity: Magic number or magic spell? Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(3), 419.
Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 445.
Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10(2), 176–199.
Soetens, E., Melis, A., & Notebaert, W. (2004). Sequence learning and sequential effects. Psychological Research, 69(1), 124–137.
Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 674–685.
Staresina, B. P., & Davachi, L. (2009). Mind the gap: binding experiences across space and time in the human hippocampus. Neuron, 63(2), 267–276.
Stark-Inbar, A., Raza, M., Taylor, J. A., & Ivry, R. B. (2016). Individual differences in implicit motor learning: task specifi city in sensorimotor adaptation and sequence learning. Journal of Neurophysiology, 117(1), 412–428.
Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30(33), 11177–11187. doi:
Ullman, M. T., Earle, S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71, 389–417.
Vékony, T., Marossy, H., Must, A., Vécsei, L., Janacsek, K., & Nemeth, D. (2019). Disentangling competence from performance in behavioral measures of learning: A lesson for cognitive neuroscience. bioRxiv, 726315.
West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C. (2017). The procedural learning defi cit hypothesis of language learning disorders: we see some problems. Developmental Science.
Willingham, D. B., Greenberg, A. R., & Thomas, R. C. (1997). Response-to-stimulus interval does not affect implicit motor sequence learning, but does affect performance. Memory and Cognition, 25(4), 534–542.
Wlotko, E. W., & Federmeier, K. D. (2015). Time for prediction? The effect of presentation rate on predictive sentence comprehension during word-by-word reading. Cortex, 68, 20–32.
Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423–428.