Authors:
Mariann Kiss Kognitív Tudományi Tanszék, BME Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, Magyarország
Emlékezet, Nyelv és Idegtudomány Kutatócsoport, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest, Magyarország

Search for other papers by Mariann Kiss in
Current site
Google Scholar
PubMed
Close
,
Dezső Németh Pszichológiai Intézet, ELTE Eötvös Loránd University, Budapest, Magyarország
Emlékezet, Nyelv és Idegtudomány Kutatócsoport, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest, Magyarország
Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France

Search for other papers by Dezső Németh in
Current site
Google Scholar
PubMed
Close
, and
Karolina Janacsek Pszichológiai Intézet, ELTE Eötvös Loránd University, Budapest, Magyarország
Emlékezet, Nyelv és Idegtudomány Kutatócsoport, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest, Magyarország
Gondolkodás és Tanulás Kutatóközpont, Humán Tudományok Intézete, Greenwich-i Egyetem, London, Egyesült Királyság

Search for other papers by Karolina Janacsek in
Current site
Google Scholar
PubMed
Close
Open access

A hétköznapok során gyakran előfordul, hogy gyengén teljesítünk egy olyan helyzetben, amelyben korábban már bizonyítottuk tudásunkat. A pszichológián belül elméleti és empirikus eredmények is alátámasztják ezt a hétköznapi jelenséget, mely szerint egy adott időpontban mérhető teljesítmény (performancia) nem feltétlenül tükrözi hűen a mögötte álló tudást (kompetencia). Jelen rövid, célzott összefoglaló tanulmánnyal az a célunk, hogy felhívjuk a fi gyelmet a performancia-kompetencia disszociációra a procedurális tanulás területét használva példaként. Fontos azonban kiemelni, hogy ez a jelenség más kognitív funkciók esetén is jelen lehet (pl. nyelvi teljesítmény, döntéshozatal, észlelés), ezért tanulmányunk új kutatásokat ösztönözhet számos kognitív funkció esetén. A korábbi empirikus eredmények áttekintésekor külön hangsúlyt fektetünk a tanulás idői faktoraira, amelyek meghatározhatják, hogy disszociáció lép-e fel adott esetben a performancia és kompetencia között vagy nem. Ezután kitérünk azokra az elméleti magyarázatokra is, amelyek az idői faktorok tanulásra, illetve performancia-kompetencia disszociációra kifejtett hatását próbálják magyarázni. A tanulmány végén kitekintést nyújtunk a disszociáció kutatásmódszertani vonatkozásaira és olyan alkalmazott helyzetekre is, ahol ez a disszociáció jelentősen befolyásolhatja a levont következtetéseket: ilyen például az oktatási-tanulási környezet (készségtanulás, nyelvtanulás), illetve a kognitív tesztek használata a klinikai diagnosztikában.

It often occurs in our daily life that we perform weaker in a task in which we have previously shown good knowledge and understanding. In psychology, both theoretical and empirical evidence supports this phenomenon: that is, on certain occasions, our momentary performance does not accurately refl ect our underlying knowledge (competence). The aim of our short, focused review paper is to draw attention to this performance vs. competence dissociation using the fi eld of procedural learning as an example. It is important to note, however, that this phenomenon may occur for a wide range of cognitive functions (e.g., aspects of language performance, decision-making, perception), and therefore, our paper can stimulate research in these areas. In this paper, we review previous empirical fi ndings that focused on the role of temporal factors in procedural learning as these factors can affect whether or not dissociation occurs in a certain case. Then, we briefl y present the explanatory accounts of the role of the temporal factors in learning and in performance vs. competence dissociation. Finally, our review discusses the implications of the presented fi ndings both from a methodological and an applied perspective, highlighting that the dissociation between performance and competence can substantially alter the outcomes and our interpretations in various situations such as in education (e.g., skill learning, language learning) and when applying cognitive tests in clinical settings.

  • Altmann, E. M. (2009). Evidence for temporal decay in short-term episodic memory. Trends in Cognitive Sciences, 13(7), 279.

  • Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: the role of age and speed of stimulus presentation. Developmental Science, 14(3), 464473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, B. C., Frost, R., & Christiansen, M. H. (2017). The long road of statistical learning research: past, present and future. Philosophical Transactions of The Royal Society B Biological Sciences, 372(1711), 20160047.

    • Search Google Scholar
    • Export Citation
  • Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology: General, 133(1), 83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrouillet, P., De Paepe, A., & Langerock, N. (2012). Time causes forgetting from working memory. Psychonomic Bulletin & Review, 19(1), 8792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin & Review, 23(4), 12501256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539.

  • Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10(1), 1221.

  • Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755.

  • Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 887899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burle, B., Van den Wildenberg, W., & Ridderinkhof, K. R. (2005). Dynamics of facilitation and interference in cue-priming and Simon tasks. European Journal of Cognitive Psychology, 17(5), 619641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, Massachusetts: MIT Press.

  • Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. In French, R. M., & Cleeremans, A. (Eds), Implicit Learning and Consciousness: An Empirical. Psychology Press. 140.

    • Search Google Scholar
    • Export Citation
  • Conway, C. M. (2020). How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neuroscience and Biobehavioral Reviews, 112, 279299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defi ned by luminance and color contrast. Vision Research, 40(3), 287299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci, 19(2), 9299.

  • Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Destrebecqz, A., & Cleeremans, A. (2003). Temporal effects in sequence learning. Advances in Consciousness Research, 48, 181214.

  • Dominey, P. F. (1998). Infl uences of temporal organization on sequence learning and transfer: Comments on Stadler (1995) and Curran and Keele (1993). Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 234.

    • Search Google Scholar
    • Export Citation
  • Emberson, L. L., Conway, C. M., & Christiansen, M. H. (2011). Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. The Quarterly Journal of Experimental Psychology, 64(5), 10211040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 458467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning in humans. Journal of Neuroscience, 31(37), 1315713167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, C. M., & Giovanello, K. S. (2017). The effect of presentation rate on implicit sequence learning in aging. Memory, 25(2), 187200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory and Cognition, 22(1), 95110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horoufchin, H., Philipp, A. M., & Koch, I. (2011). The dissipating task-repetition benefi t in cued task switching: Task-set decay or temporal distinctiveness? Journal of Experimental Psychology: Human Perception and Performance, 37(2), 455.

    • Search Google Scholar
    • Export Citation
  • Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit learning of higher-order dependencies in serial patterns. Psychology and Aging, 12(4), 634656. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Yankovich, H. (2007). Event timing and age defi cits in higher-order sequence learning. Aging, Neuropsychology, and Cognition, 14, 647668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janacsek, K., Fiser, J., & Nemeth, D. (2012). The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental Science, 15(4), 496505. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janacsek, K., & Nemeth, D. (2012). Predicting the future: From implicit learning to consolidation. International Journal of Psychophysiology, 83(2), 213221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: correlated or complicated? Cortex, 49(8), 20012006.

  • Janacsek, K., & Nemeth, D. (2015). The puzzle is complicated: When should working memory be related to implicit sequence learning, and when should it not? (Response to Martini és mtsai). Cortex, 64, 411412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219231.

    • Search Google Scholar
    • Export Citation
  • Karlsen, P. J., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2010). Binding across space and time in visual working memory. Memory and Cognition, 38(3), 292303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, M., Nemeth, D., & Janacsek, K. (2019). Stimulus presentation rates affect performance but not the acquired knowledge—Evidence from procedural learning. bioRxiv, 650598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kóbor, A., Janacsek, K., Takács, Á., & Nemeth, D. (2017). Statistical learning leads to persistent memory: Evidence for one-year consolidation. Scientifi c Reports, 7(1), 760. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechelli, A., Friston, K. J., & Price, C. J. (2000). The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience, 12(Supplement 2), 145156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercer, T., & McKeown, D. (2014). Decay uncovered in nonverbal short-term memory. Psycho-nomic Bulletin & Review, 21(1), 128135.

  • Mutter, B., Alcorn, M. B., & Welsh, M. (2006). Theory of mind and executive function: Working-memory capacity and inhibitory control as predictors of false-belief task performance. Perceptual and Motor Skills, 102(3), 819835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, D., & Janacsek, K. (2011). The dynamics of implicit skill consolidation in young and elderly adults. Journal of Gerontology Psychological Science, 66(1), 1522.

    • Search Google Scholar
    • Export Citation
  • Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., és tsai (2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience, 7, 318. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, D. V., & Howard, J. H., Jr. (2010).Sleep has no critical role in implicit motor sequence learning in young and old adults. Experimental Brain Research, 201(2), 351358. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142(7), 758.

  • Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: Reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134(1), 7392. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reber, A. S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. Vol. 19. New York: Oxford University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reingold, E. M., & Merikle, P. M. (1988). Using direct and indirect measures to study perception without awareness. Perception and Psychophysics, 44(6), 563575.

    • Search Google Scholar
    • Export Citation
  • Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1355.

    • Search Google Scholar
    • Export Citation
  • Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romano, J. C., Howard, J. H., Jr., & Howard, D. V. (2010). One-year retention of general and sequence-specifi c skills in a probabilistic, serial reaction time task. Memory, 18(4), 427441. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharlau, I. (2007). Perceptual latency priming: A measure of attentional facilitation. Psychological Research, 71(6), 678686.

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, W., Tremblay, L., & Hollerman, J. R. (2003). Changes in behavior-related neuronal activity in the striatum during learning. Trends in Neurosciences, 26(6), 321328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweickert, R., & Boruff, B. (1986). Short-term memory capacity: Magic number or magic spell? Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(3), 419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 445.

    • Search Google Scholar
    • Export Citation
  • Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10(2), 176199.

    • Search Google Scholar
    • Export Citation
  • Soetens, E., Melis, A., & Notebaert, W. (2004). Sequence learning and sequential effects. Psychological Research, 69(1), 124137.

  • Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 674685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staresina, B. P., & Davachi, L. (2009). Mind the gap: binding experiences across space and time in the human hippocampus. Neuron, 63(2), 267276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark-Inbar, A., Raza, M., Taylor, J. A., & Ivry, R. B. (2016). Individual differences in implicit motor learning: task specifi city in sensorimotor adaptation and sequence learning. Journal of Neurophysiology, 117(1), 412428.

    • Search Google Scholar
    • Export Citation
  • Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30(33), 1117711187. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, M. T., Earle, S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71, 389417.

    • Search Google Scholar
    • Export Citation
  • Vékony, T., Marossy, H., Must, A., Vécsei, L., Janacsek, K., & Nemeth, D. (2019). Disentangling competence from performance in behavioral measures of learning: A lesson for cognitive neuroscience. bioRxiv, 726315.

    • Search Google Scholar
    • Export Citation
  • West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C. (2017). The procedural learning defi cit hypothesis of language learning disorders: we see some problems. Developmental Science.

    • Search Google Scholar
    • Export Citation
  • Willingham, D. B., Greenberg, A. R., & Thomas, R. C. (1997). Response-to-stimulus interval does not affect implicit motor sequence learning, but does affect performance. Memory and Cognition, 25(4), 534542.

    • Search Google Scholar
    • Export Citation
  • Wlotko, E. W., & Federmeier, K. D. (2015). Time for prediction? The effect of presentation rate on predictive sentence comprehension during word-by-word reading. Cortex, 68, 2032.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423428.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Fülöp, Márta

Chair of the Editorial Board:
Molnár Márk, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest

          Area Editors

  • Bereczkei Tamás, PTE (Evolutionary psychology)
  • Bolla Veronika, ELTE BGGY (Psychology of special education)
  • Demetrovics Zsolt, ELTE PPK (Clinical psychology)
  • Faragó Klára, ELTE (Organizational psychology)
  • Hámori Eszter, PPKE (Clinical child psychology)
  • Kéri Szabolcs, SZTE (Experimental and Neuropsychology)
  • Kovács Kristóf, ELTE (Cognitive psychology)
  • Molnárné Kovács Judit, DTE (Social psychology)
  • Nagy Tamás, ELTE PPK (Health psychology, psychometry)
  • Nguyen Luu Lan Anh, ELTE PPK (Cross-cultural psychology)
  • Pohárnok Melinda, PTE (Developmental psychology)
  • Rózsa Sándor, KRE (Personality psychology and psychometrics)
  • Sass Judit, BCE (Industrial and organizational psychology)
  • Szabó Éva, SZTE (Educational psychology)
  • Szokolszky Ágnes, SZTE (Book review)

 

        Editorial Board

  • Csabai Márta, Károli Gáspár Református Egyetem, Budapest

  • Császár Noémi, Pszichoszomatikus Ambulancia, Budapest

  • Csépe Valéria, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest

  • Czigler István, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest

  • Dúll Andrea, ELTE PPK, Budapest
  • Ehmann Bea, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest
  • Gervai Judit, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest
  • Kiss Enikő Csilla, Károli Gáspár Református Egyetem, Budapest
  • Kiss Paszkál, Károli Gáspár Református Egyetem, Budapest
  • Lábadi Beátrix, Pécsi Tudományegyetem, Pécs
  • Nagybányai-Nagy Olivér, Károli Gáspár Református Egyetem, Budapest
  • Péley Bernadette, Pécsi Tudományegyetem, Pécs
  • Perczel-Forintos Dóra, Semmelweis Egyetem, Budapest
  • Polonyi Tünde, Debreceni Egyetem
  • Révész György,  Pécsi Tudományegyetem, Pécs
  • Winkler István, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest

 

Secretary of the editorial board: 

  •  Saád Judit, HUN-REN TTK, Kognitív Idegtudományi és Pszichológiai Intézet, Budapest

 

Magyar Pszichológiai Szemle
ELTE PPK Pszichológiai Intézet
Address: H-1064 Budapest, Izabella u. 46.
E-mail: pszichoszemle@gmail.com

Indexing and Abstracting Services:

  • PsycINFO
  • Scopus
  • CABELLS Journalytics

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (General Psychology)
SNIP 0.149
Scimago  
SJR index 0.126
SJR Q rank Q4

Magyar Pszichológiai Szemle
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 184 EUR / 220 USD
Print + online subscription: 224 EUR / 252 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Magyar Pszichológiai Szemle
Language Hungarian
Size B5
Year of
Foundation
1928
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Pszichológiai Társaság 
Founder's
Address
H-1075 Budapest, Hungary Kazinczy u. 23-27. I/116. 
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0025-0279 (Print)
ISSN 1588-2799 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 0 163 9
Nov 2024 0 189 14
Dec 2024 0 223 12
Jan 2025 0 64 11
Feb 2025 0 80 2
Mar 2025 0 110 9
Apr 2025 0 0 0