View More View Less
  • 1 University of Veterinary Medicine, Budapest, Hungary
  • 2 Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary
  • 3 Yale University School of Medicine, New Haven, CT, USA
  • 4 New York University, New York, NY, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E2) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10–10 M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E2) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E2. The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand–receptor interaction.

  • Abel, E. D., Moura, E. G., Ahima, R. S., Campos-Barros, A., Pazos-Moura, C. C., Boers, M. E., Kaulbach, H. C., Forrest, D. and Wondisford, F. E. (2003): Dominant inhibition of thyroid hormone action selectively in the pituitary of thyroid hormone receptor-beta null mice abolishes the regulation of thyrotropin by thyroid hormone. Mol. Endocrinol. 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Amma, L. L., Campos-Barros, A., Wang, Z. and Forrest, D. (2001): Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol. Endocrinol. 15, 467475.

    • Search Google Scholar
    • Export Citation
  • Avissar-Whiting, M., Veiga, K. R., Uhl, K. M., Maccani, M. A., Gagne, L. A., Moen, E. L. and Marsit, C. J. (2010): Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 29, 401406.

    • Search Google Scholar
    • Export Citation
  • Babu, S., Uppu, S., Claville, M. O. and Uppu, R. M. (2013): Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicol. Mech. Methods 23, 273280.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. M. (2008): Rapid signaling mechanisms of estrogens in the developing cerebellum. Brain Res. Rev. 57, 481492.

  • Belcher, S. M. and Zsarnovszky, A. (2001): Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther. 299, 408414.

    • Search Google Scholar
    • Export Citation
  • Billon, N., Jolicoeur, C., Tokumoto, Y., Vennstrom, B. and Raff, M. (2002): Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1. The EMBO Journal 21, 64526460.

    • Search Google Scholar
    • Export Citation
  • Bradley, D. J., Towle, H. C. and Young, W. S. (1994): Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA 91, 439443.

    • Search Google Scholar
    • Export Citation
  • Delfosse, V., Grimaldi, M., Maire, A., Bourguet, W. and Balaguer, P. (2014): Nuclear receptor profiling of bisphenol-A and its halogenated analogues. Vitam. Horm. 94, 229251.

    • Search Google Scholar
    • Export Citation
  • Esaki, T., Suzuki, H., Cook, M., Shimoji, K., Cheng, S. Y., Sokoloff, L. and Nunez, J. (2003): Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 144, 41174122.

    • Search Google Scholar
    • Export Citation
  • Fan, X., Xu, H., Warner, M. and Gustafsson, J. A. (2010): ERbeta in CNS: new roles in development and function. Prog. Brain Res. 181, 233250.

    • Search Google Scholar
    • Export Citation
  • Fauquier, T., Chatonnet, F., Picou, F., Richard, S., Fossat, N., Aguilera, N., Lamonerie, T. and Flamant, F. (2014): Purkinje cells and Bergmann glia are primary targets of the TRa1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 141, 166175.

    • Search Google Scholar
    • Export Citation
  • Flores-Morales, A., Gullberg, H., Fernandez, L., Stahlberg, N., Lee, N. H., Vennstrom, B. and Norstedt, G. (2002): Patterns of liver gene expression governed by TRbeta. Mol. Endocrinol. 16, 12571268.

    • Search Google Scholar
    • Export Citation
  • Gentilcore, D., Porreca, I., Rizzo, F., Ganbaatar, E., Carchia, E., Mallardo, M., de Felice, M. and Ambrosino, C. (2013): Bisphenol A interferes with thyroid specific gene expression. Toxicology 304, 2131.

    • Search Google Scholar
    • Export Citation
  • Gothe, S., Wang, Z., Ng, L., Kindblom, J. M., Barros, A. C., Ohlsson, C., Vennstrom, B. and Forrest, D. (1999): Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 13, 13291341.

    • Search Google Scholar
    • Export Citation
  • Huc, L., Lemarie, A., Gueraud, F. and Helies-Toussaint, C. (2012): Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol. In Vitro 26, 709717.

    • Search Google Scholar
    • Export Citation
  • Iwamuro, S., Yamada, M., Kato, M. and Kikuyama, S. (2006): Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and downregulation of retinoid X receptor gamma in Xenopus tail culture. Life Sci. 79, 21652171.

    • Search Google Scholar
    • Export Citation
  • Kariv, R., Enden, A., Zvibel, I., Rosner, G., Brill, S., Shafritz, D. A., Halpern, Z. and Oren, R. (2003): Triiodothyronine and interleukin-6 (IL6) induce expression of HGF in an immortalized rat hepatic stellate cell line. Liver Int. 23, 187193.

    • Search Google Scholar
    • Export Citation
  • Leonard, J. L. (1988): Dibutyryl cAMP induction of type II 5'deiodinase activity in rat brain astrocytes in culture. Biochem. Biophys. Res. Commun. 151, 11641172.

    • Search Google Scholar
    • Export Citation
  • Leonard, J. L. (2008): Non-genomic actions of thyroid hormone in brain development. Steroids 73, 10081012.

  • Martinez-Galan, J. R., Pedraza, P., Santacana, M., Escobar del Ray, F., Morreale de Escobar, G. and Ruiz-Marcos, A. (1997): Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J. Clin. Invest. 99, 27012709.

    • Search Google Scholar
    • Export Citation
  • Mathisen, G. H., Yazdani, M., Rakkestad, K. E., Aden, P. K., Bodin, J., Samuelsen, M., Nygaard, U. C., Goverud, I. L., Gaarder, M., Loberg, E. M., Bolling, A. K., Becher, R. and Paulsen, R. E. (2013): Prenatal exposure to bisphenol A interferes with the development of cerebellar granule neurons in mice and chicken. Int. J. Dev. Neurosci. 31, 762769.

    • Search Google Scholar
    • Export Citation
  • Miodovnik, A., Edwards, A., Bellinger, D. C. and Hauser, R. (2014): Developmental neurotoxicity of ortho-phthalate diesters: review of human and experimental evidence. Neurotoxicology 41, 112122.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, Y. and Tayama, S. (2000): Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol. 74, 99105.

    • Search Google Scholar
    • Export Citation
  • Ng, L., Pedraza, P. E., Faris, J. S., Vennstrom, B., Curran, T., Morreale de Escobar, G. and Forrest, D. (2001): Audiogenic seizure susceptibility in thyroid hormone receptor beta-deficient mice. Neuroreport 12, 23592362.

    • Search Google Scholar
    • Export Citation
  • O’Shea, P. J., Bassett, J. H., Sriskantharajah, S., Ying, H., Cheng, S. Y. and Williams, G. R. (2005): Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol. Endocrinol. 19, 30453059.

    • Search Google Scholar
    • Export Citation
  • Pasquini, J. M. and Adamo, A. M. (1994): Thyroid hormones and the central nervous system. Dev. Neurosci. 16, 18.

  • Plateroti, M., Kress, E., Mori, J. I. and Samarut, J. (2006): Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol. Cell. Biol. 26, 32043214.

    • Search Google Scholar
    • Export Citation
  • Scalise, T. J., Gyorffy, A., Tóth, I., Kiss, D. S., Somogyi, V., Goszleth, G., Bartha, T., Frenyó, L. V. and Zsarnovszky, A. (2012): Ligand-induced changes in oestrogen and thyroid hormone receptor expression in the developing rat cerebellum: A comparative quantitative PCR and Western blot study. Acta Vet. Hung. 60, 263284.

    • Search Google Scholar
    • Export Citation
  • Sheng, Z. G., Tang, Y., Liu, Y. X., Yuan, Y., Zhao, B. Q., Chao, X. J. and Zhu, B. Z. (2012): Low concentrations of bisphenol A suppress thyroid hormone receptor transcription through a nongenomic mechanism. Toxicol. Appl. Pharmacol. 259, 133142.

    • Search Google Scholar
    • Export Citation
  • Shikimi, H., Sakamoto, H., Mezaki, Y., Ukena, K. and Tsutsui, K. (2004): Dendritic growth in response to environmental estrogens in the developing Purkinje cell in rats. Neurosci. Lett. 364, 114118.

    • Search Google Scholar
    • Export Citation
  • Siesser, W. B., Cheng, S. Y. and McDonald, M. P. (2005): Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology (Berl.) 181, 653663.

    • Search Google Scholar
    • Export Citation
  • Simorangkir, D. R., Wreford, N. G. and De Kretser, D. M. (1997): Impaired germ cell development in the testes of immature rats with neonatal hypothyroidism. J. Androl. 18, 186193.

    • Search Google Scholar
    • Export Citation
  • Somogyi, V., Gyorffy, A., Scalise, T. J., Kiss, D. S., Goszleth, G., Bartha, T., Frenyó, V. L. and Zsarnovszky, A. (2011): Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutr. Res. Rev. 24, 132154.

    • Search Google Scholar
    • Export Citation
  • Tilghman, S. L., Bratton, M. R., Segar, H. C., Martin, E. C., Rhodes, L. V., Li, M., McLachlan, J. A., Wiese, T. E., Nephew, K. P. and Burow, M. E. (2012): Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 7, e32754.

    • Search Google Scholar
    • Export Citation
  • Vasudevan, N., Koibuchi, N., Chin, W. W. and Pfaff, D. W. (2001): Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res. Mol. Brain Res. 95, 917.

    • Search Google Scholar
    • Export Citation
  • Veiga-Lopez, A., Luense, L. J., Christenson, L. K. and Padmanabhan, V. (2013): Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 154, 18731884.

    • Search Google Scholar
    • Export Citation
  • Wong, J. K., Kennedy, P. R. and Belcher, S. M. (2001): Simplified serum- and steroid-free culture conditions for the high-throughput viability analysis of primary cultures of cerebellar neurons. J. Neurosci. Methods 110, 4555.

    • Search Google Scholar
    • Export Citation
  • Wong, J. K., Le, H. H., Zsarnovszky, A. and Belcher, S. M. (2003): Estrogens and ICI182,780 (Faslodex) modulate mitosis and cell death in immature cerebellar neurons via rapid activation of p44/p42 mitogen-activated protein kinase. J. Neurosci. 23, 49844995.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Liu, Y., Sadamatsu, M., Tsutsumi, S., Akaike, M., Ushijima, H. and Kato, N. (2007): Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci. Res. 58, 149155.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Lu, Y., Zhang, G., Chen, L., Tian, D., Shen, X., Yang, Y. and Dong, F. (2014): Bisphenol A promotes dendritic morphogenesis of hippocampal neurons through estrogen receptormediated ERK1/2 signal pathway. Chemosphere 96, 129137.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, H., Zhu, J., Yu, T., Sasaki, K., Umetsu, H., Kidachi, Y. and Ryoyama, K. (2006): Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation. Toxicology 226, 131142.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. Z., Yong L., Jia, X. D., Li, N. and Fan, Y. X. (2013): Combined subchronic toxicity of bisphenol A and dibutyl phthalate on male rats. Biomed. Environ. Sci. 26, 6369.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., Lorenc, H., Stephenson, H., Wang, Y. J., Witherspoon, D., Katzenellenbogen, B., Pfaff, D. and Vasudevan, N. (2005): Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proc. Natl. Acad. Sci. USA 102, 48904895.

    • Search Google Scholar
    • Export Citation
  • Zoeller, R. T. (2005): Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals? Mol. Cell. Endocrinol. 242, 1015.

    • Search Google Scholar
    • Export Citation
  • Zoeller, R. T., Bansal, R. and Parris, C. (2005): Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146, 607612.

    • Search Google Scholar
    • Export Citation
  • Zsarnovszky, A., Földvári, E. G., Rónai, Z., Bartha, T. and Frenyó, L. V. (2007): Oestrogens in the mammalian brain: from conception to adulthood –a review. Acta Vet. Hung. 55, 333347.

    • Search Google Scholar
    • Export Citation
  • Zsarnovszky, A., Le, H. H., Wang, H. S. and Belcher, S. M. (2005): Ontogeny of rapid estrogenmediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. Endocrinology 146, 53885396.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 11 1 1
Sep 2020 21 1 2
Oct 2020 18 2 4
Nov 2020 14 5 1
Dec 2020 17 0 0
Jan 2021 12 0 0
Feb 2021 0 0 0