View More View Less
  • 1 University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
  • 2 University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
  • 3 Aggtelek National Park Directorate, Jósvafő, Hungary
  • 4 Hungarian Natural History Museum, Budapest, Hungary
  • 5 Charles University, Prague, Czech Republic
  • 6 Biology Centre, Ceske Budejovice, Czech Republic
  • 7 Eszterházy Károly University, Eger, Hungary
  • 8 Debrecen University, Debrecen, Hungary
  • 9 Hannover Adventure Zoo, Hannover, Germany
  • 10 Hungarian Academy of Sciences, Budapest, Hungary
Open access

Kinetoplastids are flagellated protozoa, including principally free-living bodonids and exclusively parasitic trypanosomatids. In the most species-rich genus, Trypanosoma, more than thirty species were found to infect bats worldwide. Bat trypanosomes are also known to have played a significant role in the evolution of T. cruzi, a species with high veterinary medical significance. Although preliminary data attested the occurrence of bat trypanosomes in Hungary, these were never sought for with molecular methods. Therefore, amplification of an approx. 900-bp fragment of the 18S rRNA gene of kinetoplastids was attempted from 307 ixodid and 299 argasid ticks collected from bats, and from 207 cimicid bugs collected from or near bats in Hungary and Romania. Three samples, one per each bat ectoparasite group, were PCR positive. Sequencing revealed the presence of DNA from free-living bodonids (Bodo saltans and neobodonids), but no trypanosomes were detected. The most likely source of bodonid DNA detected here in engorged bat ectoparasites is the blood of their bat hosts. However, how bodonids were acquired by bats, can only be speculated. Bats are known to drink from freshwater bodies, i.e. the natural habitats of B. saltans and related species, allowing bats to ingest bodonids. Consequently, these results suggest that at least the DNA of bodonids might pass through the alimentary mucosa of bats into their circulation. The above findings highlight the importance of studying bats and other mammals for the occurrence of bodonids in their blood and excreta, with potential relevance to the evolution of free-living kinetoplastids towards parasitism.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Auty, H., Anderson, N. E., Picozzi, K., Lembo, T., Mubanga, J., Hoare, R., Fyumagwa, R. D., Mable, B., Hamill, L., Cleaveland, S. and Welburn, S. C. (2012): Trypanosome diversity in wildlife species from the Serengeti and Luangwa Valley ecosystems. PLoS Negl. Trop. Dis. 6, e1828.

    • Search Google Scholar
    • Export Citation
  • Botero, A., Cooper, C., Thompson, C. K., Clode, P. L., Rose, K. and Thompson, R. C. A. (2016): Morphological and phylogenetic description of Trypanosoma noyesi sp. nov.: an Australian wildlife trypanosome within the T. cruzi clade. Protist 167, 425439.

    • Search Google Scholar
    • Export Citation
  • Champlot, S., Berthelot, C., Pruvost, M., Bennett, E. A., Grange, T. and Geigl, E. M. (2010): An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE 5, e13042.

    • Search Google Scholar
    • Export Citation
  • da Costa, A. P., Nunes, P. H., Leite, B. H. S. da S., Ferreira, J. I. G., Tonhosolo, R., da Rosa A. R., da Rocha, P. A., Aires, C. C., Gennari, S. M. and Marcili, A. (2016): Diversity of bats trypanosomes in hydroelectric area of Belo Monte in Brazilian Amazonia. Acta Trop. 164, 185193.

    • Search Google Scholar
    • Export Citation
  • da Silva, F. M., Noyes, H., Campaner, M., Junqueira, A. C. V., Coura, J. R., Añez, N., Shaw, J. J., Stevens, J. R. and Teixeira, M. M. G. (2004): Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitol. 129, 549561.

    • Search Google Scholar
    • Export Citation
  • Dario, M. A., Moratelli, R., Schwabl, P., Jansen, A. M. and Llewellyn, M. S. (2017): Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats. PLoS Negl. Trop. Dis. 11, e0005790.

    • Search Google Scholar
    • Export Citation
  • Das Gupta, B. M. and Chatterjee, H. (1938): Observations on a Bodo-like flagellate persistently occurring in the faeces of a human being. Parasitol. 30, 5660.

    • Search Google Scholar
    • Export Citation
  • Flegontov, P., Votýpka, J., Skalický, T., Logacheva, M. D., Penin, A. A., Tanifuji, G., Onodera, N. T., Kondrashov, A. S., Volf, P., Archibald, J. M. and Lukeš, J. (2013): Paratrypanosoma is a novel early-branching Trypanosomatid. Curr. Biol. 23, 17871793.

    • Search Google Scholar
    • Export Citation
  • Gardner, R. A. and Molyneux, D. H. (1988): Trypanosoma (Megatrypanum) incertum from Pipistrellus pipistrellus: development and transmission by cimicid bugs. Parasitol. 96, 433447.

    • Search Google Scholar
    • Export Citation
  • Greif, S. and Siemers, B. M. (2010): Innate recognition of water bodies in echolocating bats. Nat. Commun. 1, 107.

  • Halos, L., Jamal, T., Vial, L., Maillard, R., Suau, A., Le Menach, A., Boulouis, H. J. and Vayssier-Taussat, M. (2004): Determination of an efficient and reliable method for DNA extraction from ticks. Vet. Res. 35, 709713.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P. B., Teixeira, M. M. G. and Stevens, J. R. (2012): The evolution of Trypanosoma cruzi: the ‘bat seeding’ hypothesis. Trends Parasitol. 28, 136141.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Estók, P., Kováts, D., Flaisz, B., Takács, N., Szőke, K., Krawczyk, A., Kontschán, J., Gyuranecz, M., Fedák, A., Farkas, R., Haarsma, A-J. and Sprong, H. (2015 a): Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasit. Vectors 8, 441.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Kontschán, J., Estrada-Peña, A., de Mera, I. G. F., Tomanović, S. and de la Fuente, J. (2015 b): Contributions to the morphology and phylogeny of the newly discovered bat tick species, Ixodes ariadnae in comparison with I. vespertilionis and I. simplex. Parasit. Vectors. 8, 47.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Kontschán, J., Kováts, D., Kovács, R., Angyal, D., Görföl, T., Polacsek, Z., Kalmár, Z. and Mihalca, A. D. (2014): Bat ticks revisited: Ixodes ariadnae sp. nov. and allopatric genotypes of I. vespertilionis in caves of Hungary. Parasit. Vectors 7, 202.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Kovács, R., Meli, M. L., Kontschán, J., Gönczi, E., Gyuranecz, M., Dán, Á., Molnár, V. and Hofmann-Lehmann, R. (2012): First detection of bartonellae in a broad range of bat ectoparasites. Vet. Microbiol. 159, 541543.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Szőke, K., Kováts, D., Estók, P., Görföl, T., Boldogh, S. A., Takács, N., Kontschán, J., Földvári, G., Barti, L., Corduneanu, A. and Sándor, A. D. (2016): DNA of piroplasms of ruminants and dogs in ixodid bat ticks. PLoS ONE 11, e0167735.

    • Search Google Scholar
    • Export Citation
  • Hornok, S., Szőke, K., Tu, V. T., Kontschán, J., Takács, N., Sándor, A. D., Halajian, A., Földvári, G., Estók, P., Plantard, O., Epis, S. and Görföl, T. (2017): Mitochondrial gene heterogeneity of the bat soft tick Argas vespertilionis (Ixodida: Argasidae) in the Palaearctic. Parasit. Vectors 10, 109.

    • Search Google Scholar
    • Export Citation
  • Klimpel, S. and Mehlhorn, H. (eds) (2013): Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths. First edition. Springer, Berlin, Heidelberg. 187 pp.

    • Search Google Scholar
    • Export Citation
  • Lima, L., Espinosa-Álvarez, O., Hamilton, P. B., Neves, L., Takata, C. S. A., Campaner, M., Attias, M., de Souza, W., Camargo, E. P. and Teixeira, M. M. (2013): Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasit. Vectors 6, 221.

    • Search Google Scholar
    • Export Citation
  • Lipa, J. J. (1963): Infection caused by Protozoa other than Sporozoa. In: Steinhaus, A. E. (ed.) Insect Pathology. An Advanced Treatise. Second edition. Academic Press, New York. pp. 335358.

    • Search Google Scholar
    • Export Citation
  • Lukeš, J., Skalický, T., Týč, J, Votýpka, J. and Yurchenko, V. (2014): Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115122.

    • Search Google Scholar
    • Export Citation
  • Maslov, D. A., Votýpka, J., Yurchenko, V. and Lukes, J. (2013): Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends. Parasitol. 29, 4352.

    • Search Google Scholar
    • Export Citation
  • Mitchell, G. C., Baker, J. H. and Sleigh, M. A. (1988): Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J. Protozool. 35, 219222.

    • Search Google Scholar
    • Export Citation
  • Molyneux, D. H. and Baffort, J. M. (1971): Observations on the trypanosome of Pipistrellus pipistrellus in Britain, Trypanosoma (Schizotrypanum) vespertilionis. Ann. Soc. Belg. Med. Trop. 51, 335348.

    • Search Google Scholar
    • Export Citation
  • Ramírez, J. D., Duque, M. C., Montilla, M., Cucunubá, Z. M. and Guhl, F. (2012): Natural and emergent Trypanosoma cruzi I genotypes revealed by mitochondrial (Cytb) and nuclear (SSU rDNA) genetic markers. Exp. Parasitol. 132, 487494.

    • Search Google Scholar
    • Export Citation
  • Rizzi, A., Raddadi, N., Sorlini, C., Nordgrd, L., Nielsen, K. M. and Daffonchio, D. (2012): The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs. Crit. Rev. Food. Sci. Nutr. 52, 142161.

    • Search Google Scholar
    • Export Citation
  • Simpson, A. G. B., Stevens, J. R. and Lukeš, J. (2006): The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 22, 168174.

    • Search Google Scholar
    • Export Citation
  • Spisák, S., Solymosi, N., Ittzés, P., Bodor, A., Kondor, D., Vattay, G., Barták, B. K., Sipos, F., Galamb, O., Tulassay, Z., Szállási, Z., Rasmussen, S., Sicheritz-Ponten, T., Brunak, S., Molnár, B. and Csabai, I. (2013): Complete genes may pass from food to human blood. PLoS ONE 8, e69805.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. E., Rasweiler, IV J. J. and D’Alessandro, A. (2007): Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats. Mem. Inst. Oswaldo Cruz 102, 559565.

    • Search Google Scholar
    • Export Citation
  • Vandersea, M. W., Birkenheuer, A. J., Litaker, R. W., Vaden, S. L., Renschler, J. S. and Gookin, J. L. (2015): Identification of Parabodo caudatus (class Kinetoplastea) in urine voided from a dog with hematuria. J. Vet. Diagn. Invest. 27, 117120.

    • Search Google Scholar
    • Export Citation