This study investigates the metabolic effects of maize- or wheat-based diets with normal (NP) and lowered (LP) dietary crude protein level [the latter supplemented with limiting amino acids and sodium (n-)butyrate at 1.5 g/kg diet] at different phases of broiler fattening. Blood samples of Ross 308 broilers were tested at the age of 1, 3 and 6 weeks. Total protein (TP) concentration increased in wheat-based and decreased in LP groups in week 3, while butyrate reduced albumin/TP ratio in week 1. Uric acid level was elevated by wheat-based diet in week 1 and by wheat-based diet and butyrate in week 3, but decreased in LP groups in weeks 3 and 6. Aspartate aminotransferase activity was increased by wheat-based diet in week 3, and creatine kinase activity was intensified by LP in weeks 3 and 6. Blood glucose level decreased in wheat-based groups in week 3; however, triglyceride concentration was augmented in the same groups in week 3. No change of glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide and insulin concentration was observed. In conclusion, an age-dependent responsiveness of broilers to dietary factors was found, dietary cereal type was a potent modulator of metabolism, and a low crude protein diet supplemented with limiting amino acids might have a beneficial impact on the growth of chickens.
Aviagen (2014): Broiler Management Handbook: Ross 308. Aviagen Ltd., Newbridge, UK.
Beauvieux, M. C., Tissier, P., Gin, H., Canioni, P. and Gallis, J. L. (2001): Butyrate impairs energy metabolism in isolated perfused liver of fed rats. J. Nutr. 131, 1986–1992.
Chamba, F., Puyalto, M., Ortiz, A., Torrealba, H., Mallo, J. J. and Riboty, R. (2014): Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and E. coli development in broiler chickens. Int. J. Poultry Sci. 13, 390–396.
Collin, A., Malheiros, R. D., Moraes, V. M. B., As, P. V., Darras, V. M., Taouis, M., Decuypere, E. and Buyse, J. (2003): Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. Br. J. Nutr. 90, 261–269.
Cowan, W. D., Korsbak, A., Hastrup, T. and Rasmussen, P. B. (1996): Influence of added microbial enzymes on energy and protein availability of selected feed ingredients. Anim. Feed Sci. Techn. 60, 311–319.
Darsi, E., Shivazad, M., Zaghari, M., Namroud, N. F. and Mohammadi, R. (2012): Effect of reduced dietary crude protein levels on growth performance, plasma uric acid and electrolyte concentration of male broiler chicks. J. Agr. Sci. Technol. Iran 14, 789–797.
Delezie, E., Bruggeman, V., Swennen, Q., Decuypere, E. and Huyghebaert, G. (2009): The impact of nutrient density in terms of energy and/or protein on live performance, metabolism and carcass composition of female and male broiler chickens of two commercial broiler strains. J. Anim. Physiol. Anim. Nutr. 94, 509–518.
Deng, H., Zheng, A., Liu, G., Chang, W., Zhang, S. and Cai, H. (2014): Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: Effects of dietary leucine and age. Poultry Sci. 93, 114–121.
Ding, W. G. and Gromada, J. (1997): Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 46, 615–621.
Donsbough, A. L., Powell, S., Waguespack, A., Bidner, T. D. and Southern, L. L. (2010): Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Sci. 89, 287–294.
Douglas, S. G. (1981): A rapid method for the determination of pentosans in wheat flour. Food Chem. 7, 139–145.
Engberg, R. M., Hedeman, M. S., Steenfeldt, S. and Jensen, B. B. (2004): Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Sci. 83, 925–938.
Gupte, A. A., Bomhoff, G. L. and Geiger, P. C. (2008): Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins. J. Appl. Physiol. 105, 839–848.
Holst, J. J. and Gromada, J. (2004): Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206.
Hu, Z. and Guo, Y. (2007): Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim. Feed Sci. Technol. 132, 240–249.
Jamroz, D., Wiliczkiewicz, A., Orda, J. and Skorupinska, J. (2002): Performance and intestine fermentation of carbohydrates in chickens fed wheat-barley diets supplemented with microbial carbohydrases. Arch. Geflugelkd. 66, 59–65.
Khan, S. A., Ujjan, N., Ahmed, G., Rind, M. I., Fazlani, S. A., Faraz, S., Ahmed, S. and Asif, M. (2011): Effect of low protein diet supplemented with or without amino acids on the production of broiler. Afr. J. Biotechnol. 10, 10058–10065.
Kien, C. L., Peltier, C. P., Mandal, S., Davie, J. R. and Blauwiekel, R. (2008): Effects of the in vivo supply of butyrate on histone acetylation of caecum in piglets. J. Parenter. Enteral Nutr. 32, 51–56.
Kotunia, A., Wolinski, J., Laubitzi, D., Jurkowska, M., Romé, V., Guilloteau, P. and Zabielski, R. (2004): Effect of sodium butyrate on the small intestine development in neonatal piglets feed by artificial sow. J. Physiol. Pharmacol. 55, 59–68.
Kowalczuk-Vasilev, E., Grela, E. R., Samolinska, W., Klebaniuk, R., Kiczorowska, B., Krusinski, R., Winiarska-Mieczan, A., Kepka, K. and Kwiecien, M. (2017): Blood metabolic profile of broiler chickens fed diets with different types and levels of inulin. Med. Weter. 73, 774–780.
Kulcsár, A., Mátis, G., Molnár, A., Petrilla, J., Husvéth, F., Huber, K., Dublecz, K. and Neogrády, Zs. (2016): Effects of butyrate on the insulin homeostasis of chickens kept on maize- or wheat-based diets. Acta Vet. Hung. 64, 482–496.
Kulcsár, A., Mátis, G., Molnár, A., Petrilla, J., Wágner, L., Fébel, H., Huber, K. and Neogrády, Zs. (2015): The effect of different application forms of (n-)butyrate on the intestinal activity of cytochrome P450 enzymes in chicken. Proc. Soc. Nutr. Physiol. 59, 78.
Kulcsár, A., Mátis, G., Molnár, A., Petrilla, J., Wágner, L., Fébel, H., Husvéth, F., Dublecz, K. and Neogrády, Zs. (2017): Nutritional modulation of intestinal drug-metabolizing cytochrome P450 by butyrate of different origin in chicken. Res. Vet. Sci. 113, 25–32.
Lin, H. V., Frassetto, A., Kowalik, E. J. Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G. and Marsh, D. J. (2012): Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240.
Malheiros, R. D., Moraes, V. M. B., Collin, A., Janssens, G. P. J., Decuypere, E. and Buyse, J. (2003): Dietary macronutrients, endocrine functioning and intermediary metabolism in broiler chickens: Pair wise substitutions between protein, fat and carbohydrate. Nutr. Res. 23, 567–578.
Manzanilla, E. G., Nofrarias, M., Anguita, M., Castillo, M., Perez, J. F., Martin-Orue, S. M., Kamel, C. and Gasa, J. (2006): Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84, 2743–2751.
Mátis, G., Kulcsár, A., Turowski, V., Fébel, H., Neogrády, Zs. and Huber, K. (2015): Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest. Anim. Endocrinol. 50, 26–31.
Mátis, G., Neogrády, Zs., Csikó, Gy., Gálfi, P., Fébel, H., Jemnitz, K., Veres, Zs., Kulcsár, A., Kenéz, Á. and Huber, K. (2013): Epigenetic effects of dietary butyrate on hepatic histone acetylation and enzymes of biotransformation in chicken. Acta Vet. Hung. 61, 477–499.
Michard, J. (2008): Seeking new broiler growth promoters. Int. J. Poultry Sci. 47, 28–30.
Molnár, A., Hess, C., Pál, L., Wágner, L., Awad, W. A., Husvéth, F., Hess, M. and Dublecz, K. (2015): Composition of diet modifies colonization dynamics of Campylobacter jejuni in broiler chickens. J. Appl. Microbiol. 118, 245–254.
Namroud, N. F., Shivazad, M. and Zaghari, M. (2008): Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level and excreta characteristics of broiler chicks. Poultry Sci. 87, 2250–2258.
National Research Council [NRC] (1994): Nutrient requirements of poultry. 9th revised edition. National Academy Press, Washington, D.C.
Patel, P., Nankova, B. B. and LaGamma, E. F. (2005): Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Dev. Brain Res. 160, 53–62.
Phillips, I. (2007): Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int. J. Antimicrob. Ag. 30, 101–107.
Piotrowska, A., Burlikowska, K. and Szymeczko, R. (2011): Changes in blood chemistry in broiler chickens during the fattening period. Folia Biol. (Krakow) 59, 183–187.
Qaisrani, S. N., van Krimpen, M. M., Kwakkel, R. P., Verstegen, M. W. A. and Hendriks, W. H. (2015): Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers. Poultry Sci. 94, 2152–2164.
Rosebrough, R. W., Mitchell, A. D. and McMurtry, J. P. (1996): Dietary crude protein changes rapidly alter metabolism and plasma insulin-like growth factor I concentrations in broiler chickens. J. Nutr. 126, 2888–2898.
Stoffers, D. A., Kieffer, T. J., Hussain, M. A., Drucker, D. J., Bonner-Weir, S., Habener, J. F. and Egan, J. M. (2000): Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748.
Swennen, Q., Janssens, G. P. J., Millet, S., Vansant, G., Decuypere, E. and Buyse, J. (2005): Effects of substitution between fat and protein on feed intake and its regulatory mechanisms in broiler chickens: endocrine functioning and intermediary metabolism. Poultry Sci. 84, 1051–1057.