View More View Less
  • 1 Doctoral School of Animal Husbandry Science, Szent István University, Gödöllő, Hungary
  • 2 National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Animal Biotechnology Department, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
  • 3 Research Centre for Farm Animal Gene Conservation, Gödöllő, Hungary
  • 4 Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • 5 Department of Reproduction, Obstetrics and Veterinary Gynaecology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
Open access

Primordial germ cells (PGCs) were isolated from blood samples of chicken embryos. We established four PGC lines: two males (FS-ZZ-101, GFP-ZZ-4ZP) and two females (FS-ZW-111, GFP-ZW-5ZP). We could not detect a significant difference in the marker expression profile, but there was a remarkable difference between the proliferation rates of these PGC lines. We monitored the number of PGCs throughout a three-day period using a high-content screening cell imaging and analysing system (HCS). We compared three different initial cell concentrations in the wells: ~1000 cells (1×, ~4000 (4× and ~8000 (8×. For the GFPZW- 5ZP, FS-ZZ-101 and FS-ZW-111 PGC lines the lowest doubling time was observed at 4× concentration, while for GFP-ZZ-4ZP we found the lowest doubling time at 1× concentration. At 8× initial concentration, the growth rate was high during the first two days for all cell lines, but this was followed by the appearance of cell aggregates decreasing the cell growth rate. We could conclude that the difference in proliferation rate could mainly be attributed to genotypic variation in the established PGC lines, but external factors such as cell concentration and quality of the culture medium also affect the growth rate of PGCs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agnew, D. J. G., Green, J. E. F., Brown, T. M., Simpson, M. J. and Binder, B. J. (2014): Distinguishing between mechanisms of cell aggregation using pair-correlation functions. J. Theor. Biol. 352, 1623.

    • Search Google Scholar
    • Export Citation
  • Alfi, O. S., Donnell, G. N. and Derencsenyi, A. (1973): C-banding of human chromosomes produced by D.N.ase. Lancet 302, 505.

  • Bertocchini, F. and Chuva de Sousa Lopes, S. M. (2016): Germline development in amniotes: A paradigm shift in primordial germ cell specification. BioEssays 38, 791800.

    • Search Google Scholar
    • Export Citation
  • De Melo Bernardo, A., Sprenkels, K., Rodrigues, G., Noce, T., Chuva de Sousa Lopes, S. M. (2012): Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation. Biol. Open 1, 11461152.

    • Search Google Scholar
    • Export Citation
  • Hegedüs, L., Padányi, R., Molnár, J., Pászty, K., Varga, K., Kenessey, I., Sárközy, E., Wolf, M., Grusch, M., Hegyi, Z., Homolya, L., Aigner, C., Garay, T., Hegedüs, B., Timár, J., Kállay, E. and Enyedi, Á. (2017): Histone deacetylase inhibitor treatment increases the expression of the plasma membrane Ca2+ pump PMCA4b and inhibits the migration of melanoma cells independent of ERK. Front. Oncol. 2017 May 24; 7:95. doi: 10.3389/fonc. 2017. 00095. eCollection 2017.

    • Search Google Scholar
    • Export Citation
  • Kagami, H. (2016): Perspectives on avian stem cells for poultry breeding. Anim. Sci. J. 87, 10651075.

  • Kecse-Nagy, C., Szittner, Z., Papp, K., Hegyi, Z., Rovero, P., Migliorini, P., Lóránd, V., Homolya, L. and Prechl, J. (2016): Characterization of NF-?B reporter U937 cells and their application for the detection of inflammatory immune-complexes. PLoS One 2016 May 27; 11(5):e0156328. doi: 10.1371/journal.pone.0156328. eCollection 2016.

    • Search Google Scholar
    • Export Citation
  • Lázár, B., Anand, M., Tóth, R., Várkonyi, E. P., Liptói, K. and Gócza, E. (2018): Comparison of the microRNA expression profiles of male and female avian primordial germ cell lines. Stem Cell Int. 2018, 117. doi: 10.1155/2018/1780679. eCollection 2018.

    • Search Google Scholar
    • Export Citation
  • Lázár, B., Tóth, R., Nagy, A., Anand, M., Liptói, K., Patakiné Várkonyi, E. and Gócza, E. (2017): Primordial germ cell-based biobanking of Hungarian indigenous chicken breeds. Poult. Sci. 96, 62.

    • Search Google Scholar
    • Export Citation
  • Lee, J. C. I., Tsai, L. C., Hwa, P. Y., Chan, C. L., Huang, A., Chin, S. C., Wang, L. C., Lin, J. T., Linacre, A. and Hsieh, H. M. (2010): A novel strategy for avian species and gender identification using the CHD gene. Mol. Cell. Probes 24, 2731.

    • Search Google Scholar
    • Export Citation
  • McGrew, M. J., Sherman, A., Ellard, F. M., Lillico, S. G., Gilhooley, H. J., Kingsman, A. J., Mitrophanous, K. A. and Sang, H. (2004): Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 5, 728 LP-733.

    • Search Google Scholar
    • Export Citation
  • Nakamura, Y. (2016): Poultry genetic resource conservation using primordial germ cells. J. Reprod. Dev. 62, 20162052.

  • Nakamura, Y., Kagami, H. and Tagami, T. (2013): Development, differentiation and manipulation of chicken germ cells. Dev. Growth Differ. 55, 2040.

    • Search Google Scholar
    • Export Citation
  • Raucci, F., Fuet, A. and Pain, B. (2015): In vitro generation and characterization of chicken longterm germ cells from different embryonic origins. Theriogenology 84, 732742.

    • Search Google Scholar
    • Export Citation
  • Renner, W. A., Jordan, M., Eppenberger, H. M. (1993): Cell–cell adhesion and aggregation : influence on the growth behavior of CHO cells. Biotechnol. Bioeng. 41, 188193.

    • Search Google Scholar
    • Export Citation
  • Ronen, D. and Benvenisty, N. (2014): Sex-dependent gene expression in human pluripotent stem cells. Cell Rep. 8, 923932.

  • Sancho, M., Di-Gregorio, A., George, N., Pozzi, S., Sánchez, J. M., Pernaute, B. and Rodríguez, T. A. (2013): Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Dev. Cell 26, 1930.

    • Search Google Scholar
    • Export Citation
  • Sztán, N., Lázár, B., Bodzsár, N., Végi, B., Liptói, K., Pain, B. and Várkonyi, E. P. (2017): Successful chimera production in the Hungarian goose (Anser anser domestica) by intracardiac injection of blastodermal cells in 3-day-old embryos. Reprod. Fertil. Dev. 29, 22062216.

    • Search Google Scholar
    • Export Citation
  • Tóth, R., Lázár, B., Anand, M., Nagy, A., Patakiné Várkonyi, E. and Gócza, E. (2017): Comparison the germ and stem cell specific marker expression in male and female embryo derived chicken PGCs. In: Heiszler, Zs., Hohol, R. and Éles-Etele, N. (eds) Hungarian Molecular Life Sciences Conference. Programme and Book of Abstracts. Eger, Hungary. pp. 240241.

    • Export Citation
  • Van Der Sanden, B., Dhobb, M., Berger, F. and Wion, D. (2010): Optimizing stem cell culture. J. Cell. Biochem. 111, 801807.

  • Whyte, J., Glover, J. D., Woodcock, M., Brzeszczynska, J., Taylor, L., Sherman, A., Kaiser, P. and McGrew, M. J. (2015): FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports 5, 11711182.

    • Search Google Scholar
    • Export Citation
  • Yao, T. and Asayama, Y. (2017): Animal-cell culture media: History, characteristics, and current issues. Reprod. Med. Biol. 16, 99117.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 8 12
Jul 2020 0 19 26
Aug 2020 0 14 11
Sep 2020 0 10 9
Oct 2020 0 12 13
Nov 2020 0 6 6
Dec 2020 0 0 0