Authors:
Sándor Hornok Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Hungary

Search for other papers by Sándor Hornok in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1125-5178
,
Sándor A. Boldogh Department of Nature Conservation, Aggtelek National Park Directorate, Jósvafő, Hungary

Search for other papers by Sándor A. Boldogh in
Current site
Google Scholar
PubMed
Close
,
Nóra Takács Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Hungary

Search for other papers by Nóra Takács in
Current site
Google Scholar
PubMed
Close
,
Attila D. Sándor Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Hungary
Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

Search for other papers by Attila D. Sándor in
Current site
Google Scholar
PubMed
Close
, and
Barbara Tuska-Szalay Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary

Search for other papers by Barbara Tuska-Szalay in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

Abstract

Anaplasma phagocytophilum is the causative agent of granulocytic anaplasmosis in humans, dogs, cats, horses and tick-borne fever in ruminants. In Europe, its main vector is the tick species Ixodes ricinus. In this study, spleen and liver samples, as well as ticks from 18 wild-living mammals (belonging to seven species) were analysed for the presence of A. phagocytophilum with molecular methods. The zoonotic ecotype-I of A. phagocytophilum was identified in a European wildcat (Felis silvestris) and its tick, a European pine marten (Martes martes) and a Eurasian red squirrel (Sciurus vulgaris). All PCR-positive samples were collected in 2019 and originated in the same geographic area. These results indicate that taxonomically diverse mammalian species can maintain the local enzootic cycle of the same genotype of A. phagocytophilum. To the best of our knowledge, this is the first report of the zoonotic variant of A. phagocytophilum in the wildcat and in the European pine marten in a broad geographical context, as well as in the red squirrel in Hungary. Since all these host species are well known for their urban and peri-urban presence, the results of this study verify their role in the synanthropic enzootic cycle of granulocytic anaplasmosis and tick-borne fever.

Abstract

Anaplasma phagocytophilum is the causative agent of granulocytic anaplasmosis in humans, dogs, cats, horses and tick-borne fever in ruminants. In Europe, its main vector is the tick species Ixodes ricinus. In this study, spleen and liver samples, as well as ticks from 18 wild-living mammals (belonging to seven species) were analysed for the presence of A. phagocytophilum with molecular methods. The zoonotic ecotype-I of A. phagocytophilum was identified in a European wildcat (Felis silvestris) and its tick, a European pine marten (Martes martes) and a Eurasian red squirrel (Sciurus vulgaris). All PCR-positive samples were collected in 2019 and originated in the same geographic area. These results indicate that taxonomically diverse mammalian species can maintain the local enzootic cycle of the same genotype of A. phagocytophilum. To the best of our knowledge, this is the first report of the zoonotic variant of A. phagocytophilum in the wildcat and in the European pine marten in a broad geographical context, as well as in the red squirrel in Hungary. Since all these host species are well known for their urban and peri-urban presence, the results of this study verify their role in the synanthropic enzootic cycle of granulocytic anaplasmosis and tick-borne fever.

Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a tick-borne, Gram-negative bacterium species with a broad geographical distribution in the northern hemisphere (Stuen et al., 2013a). It develops in neutrophils, thus causing a disease known as granulocytic anaplasmosis in humans, dogs, cats, horses and tick-borne fever in ruminants (Stuen et al., 2013a). Based on serological and molecular evidence from countries in the geographical region of Hungary (Central and Southeastern Europe), co-infections of horses and dogs with other tick-borne pathogens and A. phagocytophilum might enhance the pathogenic effect of the latter (Mircean et al., 2012; Krämer et al., 2014; Huber et al., 2017; Kovačević Filipović et al., 2018; Tsachev et al., 2019; Drážovská et al., 2021).

In Europe, the main vector of A. phagocytophilum is Ixodes ricinus (Woldehiwet, 2010). This is a generalist, three-host tick species that may feed on a broad range of reservoirs of A. phagocytophilum, and thus may overbridge wild and domestic animals as well as humans, implying the risk of zoonotic spread. In the absence of its transovarial transmission by female ticks, A. phagocytophilum cannot survive across several tick generations, and the maintenance of its natural and urban enzootic cycles is based on transstadial transmission via successive tick developmental stages (Jaarsma et al., 2019). This necessitates the alternating participation of tick vectors and vertebrate hosts in the development of A. phagocytophilum, increasing the spectrum of evolutionary pressures and thus its genetic variation.

Based on its transmission dynamics, hosts, ecological and genetic properties, A. phagocytophilum was shown to belong to four major ecotypes, among which ecotype-I has zoonotic potential (Jahfari et al., 2014). This zoonotic ecotype has the broadest range of wildlife reservoirs but may also infect certain domestic animals (Jahfari et al., 2014). In particular, the most important synanthropic hosts of ecotype-I are dogs, cats, horses, and several wild living urban or peri-urban mammals, as exemplified by wild boars, red foxes and hedgehogs, but not birds and murine or cricetid rodents (Jahfari et al., 2014; Matei et al., 2019; Jaarsma et al., 2019). However, the epidemiological role of non-canid wild carnivores and non-murine/cricetid rodents remains to be elucidated, as relevant data were published only sporadically and the ecotype(s) these hosts may harbour is (are) not always reported (e.g., in Matei et al., 2021).

In Hungary, infection with A. phagocytophilum was reported in various hosts, including small mammals (Rigó et al., 2011), dogs (Hornok et al., 2013), hedgehogs (Földvári et al., 2014), birds (Hornok et al., 2014a), red foxes (Tolnai et al., 2015) and large game animals (Hornok et al., 2018a), as well as in the main tick vector, Ixodes ricinus (Sréter et al., 2004; Egyed et al., 2012; Hornok et al., 2014b). However, while this tick species is known to occur on wild felids, mustelids and sciurid rodents in the country (Hornok et al., 2020, 2022a), there are no data on the A. phagocytophilum infection status of these mammals, like in several other regions of Central and Eastern Europe. The aim of this study was to compensate for this lack of epidemiological data.

Spleen and liver samples were collected from seven species of wild mammals, including European wildcats (Felidae: Felis silvestris, n = 4); one raccoon dog (Canidae: Nyctereutes procyonoides); four species of Mustelidae: beech martens (Martes foina, n = 3), European pine martens (Martes martes, n = 3), least weasels (Mustela nivalis, n = 2) and one Eurasian otter (Lutra lutra); as well as Eurasian red squirrels (Sciurus vulgaris, n = 4). These animals were found dead due to natural causes or as road-kills, between 2015 and 2021, in northeastern Hungary, in the Aggtelek National Park and its surroundings. This region (48° 30′ N, 20° 36′ E) is a low, karstic area with altitudes of 150–604 m covered by various deciduous forests (mainly oak and hornbeam). The landscape is dominated by systems of karstic plateaus dissected by deep valleys. The climate is humid continental with long summers. The average annual temperature is rather low, 8.2 °C, which figure is typical only of higher elevations in Hungary. The annual precipitation was formerly between 600–700 mm but it significantly decreased in the last few years to about 400–500 mm. Biogeographically this region displays a mosaic-like transition between the higher mountains of the Carpathians and the lowlands of the Pannonian Basin (Varga, 1999). From a biogeographical point of view, the study area is part of the Pannonic region. The sampled species are widespread and regularly observed in the area. However, no specific population surveys have been carried out so far, so the exact size of the populations is currently unknown.

The fur covering of each animal was carefully checked for the presence of ticks which were collected into and stored in 96% ethanol. Tick species were identified according to standard keys (Estrada-Peña et al., 2017). The DNA extracts of ticks originating from A. phagocytophilum PCR-positive hosts were also examined in this study.

DNA was extracted from host tissue samples and from whole ticks (individually) with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instruction, including an overnight digestion in tissue lysis buffer and proteinase-K at 56 °C in case of the latter, as reported by Hornok et al. (2014b, 2018a). An extraction control (tissue lysis buffer) was also processed in each set of samples.

In the screening assay, the primers EHR16SD (5′-GGT ACC YAC AGA AGA AGT CC-30) and EHR16SR (5′-TAG CAC TCA TCG TTT ACA GC- 3′) were used, which amplify an approximately 350-bp-long fragment of the 16S rRNA gene from various members of Anaplasmataceae (Brown et al., 2001), modified as reported (Hornok et al., 2018b). From samples positive in the screening PCR, amplification of an approx. 600-bp-long fragment of the heat shock chaperonin (GroEL) gene of A. phagocytophilum was also attempted (Alberti et al., 2005). The primers EphplGroEL(569)F (5′-ATG GTA TGC AGT TTG ATC GC-3′) and EphGroEL(1142)R (5′-TTG AGT ACA GCA ACA CCA CCG GAA-3′) were used as reported (Hornok et al., 2022b). Sequence-verified A. phagocytophilum DNA from a dog (code VE39) was used as positive control.

Purification and sequencing of the PCR products were done by Biomi Ltd. (Gödöllő, Hungary). Obtained sequences were manually edited, then aligned with GenBank sequences by nucleotide BLASTN program (https://blast.ncbi.nlm.nih.gov). Four species-specific sequences were submitted to GenBank (A. phagocytophilum GroEL: ON186490-ON186493).

The results are summarised in Fig. 1. The spleen and liver samples of two carnivores, a European wildcat (F. silvestris) and a European pine marten (M. martes), and only the spleen sample (but not the liver DNA extract) of a Eurasian red squirrel (Sciurus vulgaris) were positive in the 16S rRNA gene PCR to detect Anaplasmataceae. This is in line with the observation that the spleen is a more likely source of A. phagocytophilum detection than the liver (Matei et al., 2021).

Fig. 1.
Fig. 1.

Summary of results from molecular analyses of Anaplasma phagocytophilum-infected hosts. The latter included one of four European wildcats (Felis silvestris), one of three European pine martens (Martes martes) and one of four Eurasian red squirrels (Sciurus vulgaris). In the first row, these host species are shown with their silhouettes in this order, respectively. Abbreviations: F – female, N – nymph, L – larva; NA – not available

Citation: Acta Veterinaria Hungarica 70, 3; 10.1556/004.2022.00021

Amplification of the heat shock protein (GroEL) gene from these samples yielded identical sequences, with 100% (517/517 bp) identity to several sequences of ecotype-I of A. phagocytophilum deposited in GenBank (e.g., MN093180 from I. ricinus, The Netherlands: Jaarsma et al., 2019; MW366836 from wild boar-infesting ticks, Hungary: Hornok et al., 2022b). Interestingly, all PCR-positive samples were collected in the same year, 2019 and originated in the same geographic area around Szalonna (co-ordinates: 48.45093°N 20.74045°E). This means that sympatric, taxonomically diverse mammals, a wildcat, a pine marten and a red squirrel were infected with the same GroEL variant of A. phagocytophilum. Unlike this genetic consistency between three mammalian species from different orders and families, among sympatric ruminants, i.e., red deer and sheep (which both tend to harbour ecotype-I of A. phagocytophilum: Jahfari et al., 2014) identical msp4 genotypes were demonstrated only among individuals of the same host species (Stuen et al., 2013b). While it was reported that A. phagocytophilum ecotype-I has a broad host spectrum on a continental scale (Jaarsma et al., 2019), the results of this study prove that diverse mammalian species can maintain the local enzootic cycle of the same genotype.

Considering ticks collected from the three A. phagocytophilum PCR-positive mammals, one of the two I. ricinus females collected from the wildcat also harboured this GroEL variant. This may reflect that either the source of A. phagocytophilum-infection in this wildcat was the PCR-positive tick collected from it, or the tick ingested blood during bacteraemia of its host. It might be relevant to note in the context of both possibilities that the probability of transstadial transmission of A. phagocytophilum appears to be stage dependent: based on prevalence rates after acquisition feeding, it is more likely that adults of I. ricinus will harbour (and thus inoculate) A. phagocytophilum than nymphs (Ogden et al., 2003). Unlike in the case of the wildcat, all 18 ticks (belonging to four species: Fig. 1) collected from the pine marten were PCR negative. The most likely explanation for this is that the pine marten with PCR-positive spleen and liver samples was not in the state of bacteraemia. This is supported by the fact that none of the ticks collected from this host in different states of engorgement were PCR positive, and A. phagocytophilum is known to cause waving bacteraemia (Granquist et al., 2010). On the other hand, no ticks were found on the PCR-positive red squirrel.

In summary, although the sample size was relatively small in this study and all seven mammalian species involved were represented by only one to four individuals, the results are new in an international context. First, to the best of our knowledge, this is the first report of the zoonotic variant of A. phagocytophilum in wildcat in a worldwide context, because the ecotype of this pathogen reported recently in the same host species was not identified (Matei et al., 2021). Similarly, while a broad range of mustelids were screened for A. phagocytophilum in Western Europe (Hofmeester et al., 2018), ecotype-I could only be identified in the European polecat (Mustela putorius) but not in European pine martens as shown here for the first time. In addition, the Eurasian red squirrel was reported to harbour both ecotypes I and II in Western Europe (Belgium: Ruyts et al., 2017), ecotypes I, II and IV in Central Europe (Czech Republic: Lesiczka et al., 2021) and here it was identified for the first time as the host of ecotype-I in Hungary. Since all three host species of the zoonotic ecotype of A. phagocytophilum are well known for their urban or peri-urban presence (Fingland et al., 2021; Urzi et al., 2021; Wereszczuk et al., 2021), these results verify their role in the synanthropic enzootic cycle and epidemiology of granulocytic anaplasmosis and tick-borne fever.

Acknowledgement

This study was funded by Project no. TKP2020-NKA-01 implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the ‘Tématerületi Kiválósági Program 2020’ (2020-4.1.1-TKP2020) funding scheme.

References

  • Alberti, A. , Addis, M. F. , Sparagano, O. , Zobba, R. , Chessa, B. , Cubeddu, T. , Parpaglia, M. L. , Ardu, M. and Pittau, M. (2005): Anaplasma phagocytophilum, Sardinia, Italy. Emerg. Infect. Dis. 11 ,13221324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown, G. K. , Martin, A. R. , Roberts, T. K. and Aitken, R. J. (2001): Detection of Ehrlichia platys in dogs in Australia. Aust. Vet. J. 79 ,554558.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drážovská, M. , Vojtek, B. , Mojžišová, J. , Koleničová, S. , Koľvek, F. , Prokeš, M. , Korytár, Ľ. , Csanady, A. , Ondrejková, A. , Vataščinová, T. and Bhide, M. R. (2021): The first serological evidence of Anaplasma phagocytophilum in horses in Slovakia. Acta Vet. Hung. 69 ,3137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egyed, L. , Elő, P. , Sréter-Lancz, Z. , Széll, Z. , Balogh, Z. and Sréter, T. (2012): Seasonal activity and tick-borne pathogen infection rates of Ixodes ricinus ticks in Hungary. Ticks Tick Borne Dis. 3 ,9094.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Estrada-Peña, A. , Mihalca, A. D. and Petney, T. N. (2017): Ticks of Europe and North Africa: A Guide to Species Identification. Springer International Publishing. 404 pp.

    • Search Google Scholar
    • Export Citation
  • Fingland, K. , Ward, S. J. , Bates, A. J. and Bremner-Harrison, S. (2021): A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52, 2638.

    • Search Google Scholar
    • Export Citation
  • Földvári, G. , Jahfari, S. , Rigó, K. , Jablonszky, M. , Szekeres, S. , Majoros, G. , Tóth, M. , Molnár, V. , Coipan, E. C. and Sprong, H. (2014): Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in urban hedgehogs. Emerg. Infect. Dis. 20 ,496498.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Granquist, E. G. , Bårdsen, K. , Bergström, K. and Stuen, S. (2010): Variant- and individual-dependent nature of persistent Anaplasma phagocytophilum infection. Acta Vet. Scand. 52 ,25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hofmeester, T. R. , Krawczyk, A. I. , van Leeuwen, A. D. , Fonville, M. , Montizaan, M. G. E. , van den Berge, K. , Gouwy, J. , Ruyts, S. C. , Verheyen, K. and Sprong, H. (2018): Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit. Vectors 11 ,600.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Boldogh, S. A. , Takács, N. , Kontschán, J. , Szekeres, S. , Sós, E. , Sándor, A. D. , Wang, Y. and Tuska-Szalay, B. (2022a): Molecular epidemiological study on ticks and tick-borne protozoan parasites (Apicomplexa: Cytauxzoon and Hepatozoon spp.) from wild cats (Felis silvestris), Mustelidae and red squirrels (Sciurus vulgaris) in Central Europe, Hungary. Parasit. Vectors 15 ,174.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Dénes, B. , Meli, M. L. , Tánczos, B. , Fekete, L. , Gyuranecz, M. , de la Fuente, J. , de Mera, I. G. , Farkas, R. and Hofmann-Lehmann, R. (2013): Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. Vet. Microbiol. 167 ,700703.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Horváth, G. , Takács, N. , Farkas, R. , Szőke, K. and Kontschán, J. (2018b): Molecular evidence of a badger-associated Ehrlichia sp., a Candidatus Neoehrlichia lotoris-like genotype and Anaplasma marginale in dogs. Ticks Tick Borne Dis. 9 ,13021309.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Kováts, D. , Csörgő, T. , Meli, M. L. , Gönczi, E. , Hadnagy, Z. , Takács, N. , Farkas, R. and Hofmann-Lehmann, R. (2014a): Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit. Vectors 7 ,128.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Kováts, D. , Horváth, G. , Kontschán, J. and Farkas, R. (2020): Checklist of the hard tick (Acari: Ixodidae) fauna of Hungary with emphasis on host-associations and the emergence of Rhipicephalus sanguineus. Exp. Appl. Acarol. 80 ,311328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Meli, M. L. , Gönczi, E. , Halász, E. , Takács, N. , Farkas, R. and Hofmann-Lehmann, R. (2014b): Occurrence of ticks and prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in three types of urban biotopes: forests, parks and cemeteries. Ticks Tick Borne Dis. 5 ,785789.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Sugár, L. , Fernández de Mera, I. G. , de la Fuente, J. , Horváth, G. , Kovács, T. , Micsutka, A. , Gönczi, E. , Flaisz, B. , Takács, N. , Farkas, R. , Meli, M. L. and Hofmann-Lehmann, R. (2018a): Tick- and fly-borne bacteria in ungulates: the prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 14 ,98.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Szekeres, S. , Horváth, G. , Takács, N. , Bekő, K. , Kontschán, J. , Gyuranecz, M. , Tóth, B. , Sándor, A. D. , Juhász, A. , Beck, R. and Farkas, R. (2022b): Diversity of tick species and associated pathogens on peri-urban wild boars – first report of the zoonotic Babesia cf. crassa from Hungary. Ticks Tick Borne Dis. 13 ,101936.

    • Search Google Scholar
    • Export Citation
  • Huber, D. , Reil, I. , Duvnjak, S. , Jurković, D. , Lukačević, D. , Pilat, M. , Beck, A. , Mihaljević, Ž. , Vojta, L. , Polkinghorne, A. and Beck, R. (2017): Molecular detection of Anaplasma platys, Anaplasma phagocytophilum and Wolbachia sp. but not Ehrlichia canis in Croatian dogs. Parasitol. Res. 116 ,30193026.

    • Search Google Scholar
    • Export Citation
  • Jaarsma, R. I. , Sprong, H. , Takumi, K. , Kazimirova, M. , Silaghi, C. , Mysterud, A. , Rudolf, I. , Beck, R. , Földvári, G. , Tomassone, L. , Groenevelt, M. , Everts, R. R. , Rijks, J. M. , Ecke, F. , Hörnfeldt, B. , Modrý, D. , Majerová, K. , Votýpka, J. and Estrada-Peña, A. (2019): Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit. Vectors 12 , 328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jahfari, S. , Coipan, E. C. , Fonville, M. , van Leeuwen, A. D. , Hengeveld, P. , Heylen, D. , Heyman, P. , van Maanen, C. , ButlerC. M. , Földvári, G. , Szekeres, S. , van Duijvendijk, G. , Tack, W. , Rijks, J. M. , van der Giessen, J. , Takken, W. , van Wieren, S. E. , Takumi, K. and Sprong, H. (2014): Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors 7 ,365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kovačević Filipović, M. M. , Beletić, A. D. , Ilić Božović, A. V. , Milanović, Z. , Tyrrell, P. , Buch, J. , Breitschwerdt, E. B. , Birkenheuer, A. J. and Chandrashekar, R. (2018): Molecular and serological prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among clinically healthy outdoor dogs in Serbia. Vet. Parasitol. Reg. Stud. Rep. 14 ,117122.

    • Search Google Scholar
    • Export Citation
  • Krämer, F. , Schaper, R. , Schunack, B. , Połozowski, A. , Piekarska, J. , Szwedko, A. , Jodies, R. , Kowalska, D. , Schüpbach, D. and Pantchev, N. (2014): Serological detection of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and Ehrlichia canis antibodies and Dirofilaria immitis antigen in a countrywide survey in dogs in Poland. Parasitol. Res. 113 ,32293239.

    • Search Google Scholar
    • Export Citation
  • Lesiczka, P. M. , Hrazdilová, K. , Majerová, K. , Fonville, M. , Sprong, H. , Hönig, V. , Hofmannová, L. , Papežík, P. , Růžek, D. , Zurek, L. , Votýpka, J. and Modrý, D. (2021): The role of peridomestic animals in the eco-epidemiology of Anaplasma phagocytophilum. Microb. Ecol. 82 ,602612.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matei, I. A. , Estrada-Peña, A. , Cutler, S. J. , Vayssier-Taussat, M. , Varela-Castro, L. , Potkonjak, A. , Zeller, H. and Mihalca, A. D. (2019): A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit. Vectors 12 ,599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matei, I. A. , Ivan, T. , Ionică, A. M. , D’Amico, G. , Deak, G. , Nadas, G. C. , Novac, C. S. , Gherman, C. M. and Mihalca, A. D. (2021): Anaplasma phagocytophilum in multiple tissue samples of wild carnivores in Romania. J. Wildl. Dis. 57 ,949953.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mircean, V. , Dumitrache, M. O. , Györke, A. , Pantchev, N. , Jodies, R. , Mihalca, A. D. and Cozma, V. (2012): Seroprevalence and geographic distribution of Dirofilaria immitis and tick-borne infections (Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Ehrlichia canis) in dogs from Romania. Vector Borne Zoonotic Dis. 12 ,595604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogden, N. H. , Casey, A. N. , Woldehiwet, Z. and French, N. P. (2003): Transmission of Anaplasma phagocytophilum to Ixodes ricinus ticks from sheep in the acute and post-acute phases of infection. Infect. Immun. 71 ,20712078.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rigó, K. , Gyuranecz, M. , Tóth, A. G. and Földvári, G. (2011): Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in small mammals and ectoparasites in Hungary. Vector Borne Zoonotic Dis. 11 ,14991501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruyts, S. C. , Frazer-Mendelewska, E. , Van Den Berge, K. , Verheyen, K. and Sprong, H. (2017): Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris). Eur. J. Wildl. Res. 63 ,912.

    • Search Google Scholar
    • Export Citation
  • Sréter, T. , Sréter-Lancz, Z. , Széll, Z. and Kálmán, D. (2004): Anaplasma phagocytophilum: an emerging tick-borne pathogen in Hungary and Central Eastern Europe. Ann. Trop. Med. Parasitol. 98 ,401405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stuen, S. , Granquist, E. G. and Silaghi, C. (2013a): Anaplasma phagocytophilum – a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3 ,31.

    • Search Google Scholar
    • Export Citation
  • Stuen, S. , Pettersen, K. S. , Granquist, E. G. , Bergström, K. , Bown, K. J. and Birtles, R. J. (2013b): Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis. 4 ,197201.

    • Search Google Scholar
    • Export Citation
  • Tolnai, Z. , Sréter-Lancz, Z. and Sréter, T. (2015): Spatial distribution of Anaplasma phagocytophilum and Hepatozoon canis in red foxes (Vulpes vulpes) in Hungary. Ticks Tick Borne Dis. 6 ,645648.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsachev, I. , Baymakova, M. and Pantchev, N. (2019): Seroprevalence of Anaplasma phagocytophilum, Ehrlichia spp. and Borrelia burgdorferi infections in horses: first report from Northern Bulgaria – Short communication. Acta Vet. Hung. 67 ,197203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urzi, F. , Šprem, N. , Potočnik, H. , Sindičić, M. , Konjević, D. , Ćirović, D. , Rezić, A. , Duniš, L. , Melovski, D. and Buzan, E. (2021): Population genetic structure of European wildcats inhabiting the area between the Dinaric Alps and the Scardo-Pindic mountains. Sci. Rep. 11 ,17984.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Varga, Z. (1999): Bio-geographical outline of the invertebrate fauna of the Aggtelek Karst and surrounding areas. In: Mahunka, S. (ed.) The Fauna of the Aggtelek National Park. Natural History of the National Parks of Hungary. Hungarian Natural History Museum, Budapest. pp. 2128.

    • Search Google Scholar
    • Export Citation
  • Wereszczuk, A. , Hofmeester, T. R. , Csanády, A. , Dumić, T. , Elmeros, M. , Lanszki, J. , Madsen, A. B. , Müskens, G. , Papakosta, M. A. , Popiołek, M. , Santos-Reis, M. , Zuberogoitia, I. and Zalewski, A. (2021): Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition. Sci. Rep. 11 ,24164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woldehiwet, Z. (2010): The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 167 ,108122.

  • Alberti, A. , Addis, M. F. , Sparagano, O. , Zobba, R. , Chessa, B. , Cubeddu, T. , Parpaglia, M. L. , Ardu, M. and Pittau, M. (2005): Anaplasma phagocytophilum, Sardinia, Italy. Emerg. Infect. Dis. 11 ,13221324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown, G. K. , Martin, A. R. , Roberts, T. K. and Aitken, R. J. (2001): Detection of Ehrlichia platys in dogs in Australia. Aust. Vet. J. 79 ,554558.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drážovská, M. , Vojtek, B. , Mojžišová, J. , Koleničová, S. , Koľvek, F. , Prokeš, M. , Korytár, Ľ. , Csanady, A. , Ondrejková, A. , Vataščinová, T. and Bhide, M. R. (2021): The first serological evidence of Anaplasma phagocytophilum in horses in Slovakia. Acta Vet. Hung. 69 ,3137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egyed, L. , Elő, P. , Sréter-Lancz, Z. , Széll, Z. , Balogh, Z. and Sréter, T. (2012): Seasonal activity and tick-borne pathogen infection rates of Ixodes ricinus ticks in Hungary. Ticks Tick Borne Dis. 3 ,9094.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Estrada-Peña, A. , Mihalca, A. D. and Petney, T. N. (2017): Ticks of Europe and North Africa: A Guide to Species Identification. Springer International Publishing. 404 pp.

    • Search Google Scholar
    • Export Citation
  • Fingland, K. , Ward, S. J. , Bates, A. J. and Bremner-Harrison, S. (2021): A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52, 2638.

    • Search Google Scholar
    • Export Citation
  • Földvári, G. , Jahfari, S. , Rigó, K. , Jablonszky, M. , Szekeres, S. , Majoros, G. , Tóth, M. , Molnár, V. , Coipan, E. C. and Sprong, H. (2014): Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in urban hedgehogs. Emerg. Infect. Dis. 20 ,496498.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Granquist, E. G. , Bårdsen, K. , Bergström, K. and Stuen, S. (2010): Variant- and individual-dependent nature of persistent Anaplasma phagocytophilum infection. Acta Vet. Scand. 52 ,25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hofmeester, T. R. , Krawczyk, A. I. , van Leeuwen, A. D. , Fonville, M. , Montizaan, M. G. E. , van den Berge, K. , Gouwy, J. , Ruyts, S. C. , Verheyen, K. and Sprong, H. (2018): Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit. Vectors 11 ,600.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Boldogh, S. A. , Takács, N. , Kontschán, J. , Szekeres, S. , Sós, E. , Sándor, A. D. , Wang, Y. and Tuska-Szalay, B. (2022a): Molecular epidemiological study on ticks and tick-borne protozoan parasites (Apicomplexa: Cytauxzoon and Hepatozoon spp.) from wild cats (Felis silvestris), Mustelidae and red squirrels (Sciurus vulgaris) in Central Europe, Hungary. Parasit. Vectors 15 ,174.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Dénes, B. , Meli, M. L. , Tánczos, B. , Fekete, L. , Gyuranecz, M. , de la Fuente, J. , de Mera, I. G. , Farkas, R. and Hofmann-Lehmann, R. (2013): Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. Vet. Microbiol. 167 ,700703.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Horváth, G. , Takács, N. , Farkas, R. , Szőke, K. and Kontschán, J. (2018b): Molecular evidence of a badger-associated Ehrlichia sp., a Candidatus Neoehrlichia lotoris-like genotype and Anaplasma marginale in dogs. Ticks Tick Borne Dis. 9 ,13021309.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Kováts, D. , Csörgő, T. , Meli, M. L. , Gönczi, E. , Hadnagy, Z. , Takács, N. , Farkas, R. and Hofmann-Lehmann, R. (2014a): Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit. Vectors 7 ,128.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Kováts, D. , Horváth, G. , Kontschán, J. and Farkas, R. (2020): Checklist of the hard tick (Acari: Ixodidae) fauna of Hungary with emphasis on host-associations and the emergence of Rhipicephalus sanguineus. Exp. Appl. Acarol. 80 ,311328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Meli, M. L. , Gönczi, E. , Halász, E. , Takács, N. , Farkas, R. and Hofmann-Lehmann, R. (2014b): Occurrence of ticks and prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in three types of urban biotopes: forests, parks and cemeteries. Ticks Tick Borne Dis. 5 ,785789.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Sugár, L. , Fernández de Mera, I. G. , de la Fuente, J. , Horváth, G. , Kovács, T. , Micsutka, A. , Gönczi, E. , Flaisz, B. , Takács, N. , Farkas, R. , Meli, M. L. and Hofmann-Lehmann, R. (2018a): Tick- and fly-borne bacteria in ungulates: the prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 14 ,98.

    • Search Google Scholar
    • Export Citation
  • Hornok, S. , Szekeres, S. , Horváth, G. , Takács, N. , Bekő, K. , Kontschán, J. , Gyuranecz, M. , Tóth, B. , Sándor, A. D. , Juhász, A. , Beck, R. and Farkas, R. (2022b): Diversity of tick species and associated pathogens on peri-urban wild boars – first report of the zoonotic Babesia cf. crassa from Hungary. Ticks Tick Borne Dis. 13 ,101936.

    • Search Google Scholar
    • Export Citation
  • Huber, D. , Reil, I. , Duvnjak, S. , Jurković, D. , Lukačević, D. , Pilat, M. , Beck, A. , Mihaljević, Ž. , Vojta, L. , Polkinghorne, A. and Beck, R. (2017): Molecular detection of Anaplasma platys, Anaplasma phagocytophilum and Wolbachia sp. but not Ehrlichia canis in Croatian dogs. Parasitol. Res. 116 ,30193026.

    • Search Google Scholar
    • Export Citation
  • Jaarsma, R. I. , Sprong, H. , Takumi, K. , Kazimirova, M. , Silaghi, C. , Mysterud, A. , Rudolf, I. , Beck, R. , Földvári, G. , Tomassone, L. , Groenevelt, M. , Everts, R. R. , Rijks, J. M. , Ecke, F. , Hörnfeldt, B. , Modrý, D. , Majerová, K. , Votýpka, J. and Estrada-Peña, A. (2019): Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit. Vectors 12 , 328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jahfari, S. , Coipan, E. C. , Fonville, M. , van Leeuwen, A. D. , Hengeveld, P. , Heylen, D. , Heyman, P. , van Maanen, C. , ButlerC. M. , Földvári, G. , Szekeres, S. , van Duijvendijk, G. , Tack, W. , Rijks, J. M. , van der Giessen, J. , Takken, W. , van Wieren, S. E. , Takumi, K. and Sprong, H. (2014): Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors 7 ,365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kovačević Filipović, M. M. , Beletić, A. D. , Ilić Božović, A. V. , Milanović, Z. , Tyrrell, P. , Buch, J. , Breitschwerdt, E. B. , Birkenheuer, A. J. and Chandrashekar, R. (2018): Molecular and serological prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among clinically healthy outdoor dogs in Serbia. Vet. Parasitol. Reg. Stud. Rep. 14 ,117122.

    • Search Google Scholar
    • Export Citation
  • Krämer, F. , Schaper, R. , Schunack, B. , Połozowski, A. , Piekarska, J. , Szwedko, A. , Jodies, R. , Kowalska, D. , Schüpbach, D. and Pantchev, N. (2014): Serological detection of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and Ehrlichia canis antibodies and Dirofilaria immitis antigen in a countrywide survey in dogs in Poland. Parasitol. Res. 113 ,32293239.

    • Search Google Scholar
    • Export Citation
  • Lesiczka, P. M. , Hrazdilová, K. , Majerová, K. , Fonville, M. , Sprong, H. , Hönig, V. , Hofmannová, L. , Papežík, P. , Růžek, D. , Zurek, L. , Votýpka, J. and Modrý, D. (2021): The role of peridomestic animals in the eco-epidemiology of Anaplasma phagocytophilum. Microb. Ecol. 82 ,602612.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matei, I. A. , Estrada-Peña, A. , Cutler, S. J. , Vayssier-Taussat, M. , Varela-Castro, L. , Potkonjak, A. , Zeller, H. and Mihalca, A. D. (2019): A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit. Vectors 12 ,599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matei, I. A. , Ivan, T. , Ionică, A. M. , D’Amico, G. , Deak, G. , Nadas, G. C. , Novac, C. S. , Gherman, C. M. and Mihalca, A. D. (2021): Anaplasma phagocytophilum in multiple tissue samples of wild carnivores in Romania. J. Wildl. Dis. 57 ,949953.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mircean, V. , Dumitrache, M. O. , Györke, A. , Pantchev, N. , Jodies, R. , Mihalca, A. D. and Cozma, V. (2012): Seroprevalence and geographic distribution of Dirofilaria immitis and tick-borne infections (Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Ehrlichia canis) in dogs from Romania. Vector Borne Zoonotic Dis. 12 ,595604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogden, N. H. , Casey, A. N. , Woldehiwet, Z. and French, N. P. (2003): Transmission of Anaplasma phagocytophilum to Ixodes ricinus ticks from sheep in the acute and post-acute phases of infection. Infect. Immun. 71 ,20712078.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rigó, K. , Gyuranecz, M. , Tóth, A. G. and Földvári, G. (2011): Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in small mammals and ectoparasites in Hungary. Vector Borne Zoonotic Dis. 11 ,14991501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruyts, S. C. , Frazer-Mendelewska, E. , Van Den Berge, K. , Verheyen, K. and Sprong, H. (2017): Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris). Eur. J. Wildl. Res. 63 ,912.

    • Search Google Scholar
    • Export Citation
  • Sréter, T. , Sréter-Lancz, Z. , Széll, Z. and Kálmán, D. (2004): Anaplasma phagocytophilum: an emerging tick-borne pathogen in Hungary and Central Eastern Europe. Ann. Trop. Med. Parasitol. 98 ,401405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stuen, S. , Granquist, E. G. and Silaghi, C. (2013a): Anaplasma phagocytophilum – a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3 ,31.

    • Search Google Scholar
    • Export Citation
  • Stuen, S. , Pettersen, K. S. , Granquist, E. G. , Bergström, K. , Bown, K. J. and Birtles, R. J. (2013b): Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis. 4 ,197201.

    • Search Google Scholar
    • Export Citation
  • Tolnai, Z. , Sréter-Lancz, Z. and Sréter, T. (2015): Spatial distribution of Anaplasma phagocytophilum and Hepatozoon canis in red foxes (Vulpes vulpes) in Hungary. Ticks Tick Borne Dis. 6 ,645648.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsachev, I. , Baymakova, M. and Pantchev, N. (2019): Seroprevalence of Anaplasma phagocytophilum, Ehrlichia spp. and Borrelia burgdorferi infections in horses: first report from Northern Bulgaria – Short communication. Acta Vet. Hung. 67 ,197203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urzi, F. , Šprem, N. , Potočnik, H. , Sindičić, M. , Konjević, D. , Ćirović, D. , Rezić, A. , Duniš, L. , Melovski, D. and Buzan, E. (2021): Population genetic structure of European wildcats inhabiting the area between the Dinaric Alps and the Scardo-Pindic mountains. Sci. Rep. 11 ,17984.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Varga, Z. (1999): Bio-geographical outline of the invertebrate fauna of the Aggtelek Karst and surrounding areas. In: Mahunka, S. (ed.) The Fauna of the Aggtelek National Park. Natural History of the National Parks of Hungary. Hungarian Natural History Museum, Budapest. pp. 2128.

    • Search Google Scholar
    • Export Citation
  • Wereszczuk, A. , Hofmeester, T. R. , Csanády, A. , Dumić, T. , Elmeros, M. , Lanszki, J. , Madsen, A. B. , Müskens, G. , Papakosta, M. A. , Popiołek, M. , Santos-Reis, M. , Zuberogoitia, I. and Zalewski, A. (2021): Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition. Sci. Rep. 11 ,24164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woldehiwet, Z. (2010): The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 167 ,108122.

  • Collapse
  • Expand

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Mária BENKŐ

Managing Editor: András SZÉKELY

Editorial Board

  • Béla DÉNES (National Food Chain Safety Office, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 467 4081 (ed.-in-chief) or (36 1) 213 9793 (editor) Fax: (36 1) 467 4076 (ed.-in-chief) or (36 1) 213 9793

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2021  
Web of Science  
Total Cites
WoS
1040
Journal Impact Factor 0,959
Rank by Impact Factor Veterinary Sciences 103/144
Impact Factor
without
Journal Self Cites
0,876
5 Year
Impact Factor
1,222
Journal Citation Indicator 0,48
Rank by Journal Citation Indicator Veterinary Sciences 106/168
Scimago  
Scimago
H-index
36
Scimago
Journal Rank
0,313
Scimago Quartile Score Veterinary (miscellaneous) (Q2)
Scopus  
Scopus
Cite Score
1,7
Scopus
CIte Score Rank
General Veterinary 79/183 (Q2)
Scopus
SNIP
0,610

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
submission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 732 EUR / 892 USD
Print + online subscription: 848 EUR / 1028 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 0 60 37
Jan 2023 0 63 34
Feb 2023 0 24 17
Mar 2023 0 69 56
Apr 2023 0 66 34
May 2023 0 39 46
Jun 2023 0 0 0