The particle size distribution (PSD) values obtained for a soil database representing the main Hungarian soil types using the Hungarian standard (MSZ-08-0205-78) and the international standard (ISO/DIS 11277:1994) were compared with the pipette method. The relationship between these PSDs and other physical soil characteristics (upper limit of plasticity according to Arany, water vapour adsorption according to Sík) was also analysed, and a suggestion was made of how these results could be converted into each other.
Experience showed that the pre-treatments applied as part of the ISO/DIS method may change the ratio of particle size fractions: there was a significant increase in the clay content, while the silt content decreased to a lesser and the sand content to a greater extent, possibly because some of the particles remain in microaggregate form when the MSZ method is used. The results confirmed the greater accuracy of the ISO/DIS method: the clay contents measured with the ISO/DIS method exhibited stronger correlations with the upper limit of plasticity according to Arany and with hygroscopicity values than those measured with the MSZ method.
The estimated ISO/DIS fractions became much closer to the measured ones when the suggested pedotransfer functions were applied. The conversion method proved to be more reliable for the prediction of clay and sand content than for silt content. In its present form the estimation method is not suitable for replacing the ISO/DIS method, but it could be of good service in research and comparative analysis in cases where only the MSZ method can be used or where only old MSZ PSD data exist.
AGU, 1947. Report of the subcommittee on sediment terminology. Transactions of American Geophysical Union. 28. 936–938.
Atterberg, A. , 1912. Die mechanische Bodenanalyse und die Klassifikation der Mineralboden Schruedens. Internationale Mitteilungen für Bodenkunde. 2. 312–342.
Balázs, R., Németh, T., Makó, A., Kovács Kis, V. & Keresztes, M., 2011. A mechanikai összetétel meghatározása során alkalmazott minta-előkészítés talajásványtani hatása. In: LIII. Georgikon Napok. Keszthely. 2011. szept. 29-30. 73–83.
Buzás I. (szerk.), 1988. Talaj- és agrokémiai vizsgálati módszerkönyv 2. A talajo. fizikai-kémiai és kémiai vizsgálati módszerei. Mezőgazdasági Kiadó. Budapest. p. 243.
Buzás I. (szerk.), 1993. Talaj- és agrokémiai vizsgálati módszerkönyv 1. A tala. fizikai, vízgazdálkodási és ásványtani vizsgálata. Inda 4231 Kiadó. Budapest. p. 357.
Di Gléria, J., Klimes-Szmik, A. & Dvoracsek, M., 1957. Talajfizika és kolloidika. Akadémi Kiadó. Budapest.
Fedotov, G.N., Shein, E.V., Putlynev, V.I., Arkhangel’skaya, T.A., Eliseev, A.V. & Milanovskii, E.Y. 2007. Physicochemical bases of differences between the sedimentometric and laser diffraction techniques of soil particle-size analysis. Eurasian Soil Science. 40. 281–288.
Filep Gy. , 1995. Talajvizsgálat. Debrecen. Agrártudományi Egyetem. Debrecen.
Fisher, P., Aumann, C., Chia, K., O'Halloran, N. & Chandra, S., 2017. Adequacy of laser diffraction for soil particle size analysis. PLo. ONE 12(5): e0176510. https://doi.org/10.1371/journal.pone.0176510
Gee G.W. & Or D., 2002. Particle-Size Analysis. In: Methods of Soil Analysis, Part 4. Physical Methods (Eds.: Dane J.H. & Topp G.C.). Madison, WI. 255–293.
Gee, G. W. & Bauder, J. W., 1986. Particle-size analysis. In: Klute, A. (ed.) Methods of soil analysis. Part 1. 2 nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 383–411.
Genrich, D. A. & Bremner, J. M., 1972. A reevaluation of the ultrasonic vibration method of dispersing soils. Soil Sci. Soc. Amer. Proc. 36. 944–947.
GOST (State Standard) 12536-79., 1979. Soils. Methods of laboratory particle-size and microaggregate-size distributions.
Hall, A.D. , 1904. The mechanical analysis of soils and the composition of the fractions resulting therefrom. J. Chem. Soc. Trans. 85. 950–963.
ISO 11277: 2009 (E). Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. International Organization for Standarization, Geneva, Switzerland.
ISO/DIS 11277:1994. Soil quality; determination of particle size distribution in mineral soil material; method by sieving and sedimentation following removal of soluble salts, organic matter and carbonates.
IUSS Working Group WRB., 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Jassó F. (szerk.), 1989. ’88 útmutató a nagyméretarányú országos talajtérképezés végrehajtásához. Agroinform Kiadó. Budapest.
Jury, W.A., Gardner, W.R. & Gardner, W.H., 1991. Soil Physics. 5th Edition, John Wiley and Sons, New York.
Kachinsky, N.A. , 1965. Soil Physics. Moscow. (in Russian)
Kubota, T. , 1972. Aggregate-formation of allophanic soils: effect of drying on the dispersion of the soils. Soil Science and Plant Nutrition. 18. 79–87.
Lavkulics, L.M. & Wiens, J.H., 1970. Comparison of organic matter destruction by hydgene peroxide and sodium hypochlorite and its effects on selected mineral constituents. Soil Sci. Soc. Am. Proc. 34. 755–758.
Lin, L. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 45. 255–268.
Lin, L., Hedayat, A.S., Sinha, B. & Yang, M., 2002. Statistical methods in assessing agreement. Journal of the American Statistical Association. 97. 257–270.
Makó, A. & Hernádi, H., 2010. A talajok szemcseösszetételének vizsgálata során alkalmazott különböző előkészítési módszerek összehasonlító értékelése. In: Török Á. & Vásárhelyi B. (szerk): Mérnökgeológia, kőzetmechanika. 101–108.
Makó, A., Máté, F., Tóth, M., László, K. & Németh, T., 2002. A különböző szabványos módszerek szerint mért agyagtartalom és néhány egyéb talajfizikai paraméter összefüggésének vizsgálata. XVI. Országos Környezetvédelmi Konferencia és Szakkiállítás. Siófok. 2002. szeptember 11–13. 231–239.
Makó, A., Tóth, G., Weynants, M, Rajkai, K., Hermann, T., Tóth, B., 2017a. Pedotransfer functions for converting laser diffraction particle-size data to conventional values. European Journal of Soil Science, doi: 10.1111/ejss.12456.
Makó A. , Varga T., Hernádi H., Labancz V. & Barna Gy., 2017b. Talajminták lézeres szemcseanalízisének módszertani tapasztalatai. Agrokémia és Talajtan. 66. 223–250.
Mathieu, Cl. & Pieltain, F., 2003. Analyse chimique des sols. Méthode. choisies. Editions Tec & Doc – Lavoisier, Paris.
Matthews, M.D. , 1991. The effect of grain shape and density on the size measurement. In: Principles, methods, and applications of particle size analysis (Ed.: Syvitski, J.P.M.). Cambridge University Press. Cambridge. 22–33.
Mikutta, R., Kleber, M., Kaiser, K. & Jahn R., 2005. Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 69. 120–135.
Miller, M. P., Radcliffe, D. E. & Miller, D. M., 1988. An historical perspective on the theory and practice of soil mechanical analysis. J. Agron. Education. 17. 24–28.
Moeys, J. , 2009. The Soil Texture Wizard R functions for plotting, classifying and transforming soil texture data Pedometron. 28. 7–10.
Moeys, J. , 2014. The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data. http://cran.rproject.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf
MSZ-08-0205-78. MÉM Ágazati Szabvány 1979. A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata, Budapest.
MSZ-08-0206-2-78. MÉM Ágazati Szabvány 1979. A talaj egyes kémiai tulajdonságainak vizsgálata. Laboratóriumi vizsgálatok (pH-érték, szódában kifejezett fenolftalein lúgosság, vízben oldható összes só, hidrolitos /y1-érték/ és kicserélődési aciditás /y2-érték/).
Nemes, A., Wösten, J.H.M., Lilly, A., Oude Voshaar, J.H., 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma. 90. 187––202.
R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Roderick, G.L. , 1966. A history of particle-size limits. Specia. report. Iowa State University. http://publications.iowa.gov/17268/1/IADOT_hr99_History_Particle_Limits.pdf
Ryżak, M. & Bieganowski, A., 2011. Methodological aspects of determining soil particle-size distibution using the laser diffraction method. J. Plant Nutr. Soil Sci. 174. 624–633.
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., Fischer, P. & Stauch, G., 2016. Influence of HCl pretreatment and organomineral complexes on laser diffraction measurement of loess–paleosol-sequences. Catena. 137. 392–405.
Shaw, T.M. & Alexander, L.T., 1936. A note on mechanical analysis and soils texture. Soil Sci. Soc. Amer. Proc.Proceedings of Soil Science Society of America. 1. 303–304.
Shein, E.V. , 2009. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science. 42. 284–291.
Simonoff, J.S. , 1996. Smoothing methods in statistics. Springer-Verlag. New York.
Sochan, A., Bieganowski, A. Bartmiński, P., Ryżak, M., Brzezińska, M., Dębicki, R., Stuczyński, T. & Polakowski, C., 2015. Use of the laser diffraction method for assessment of the pipette method. Soil Sci. Soc. Am. J. 79. 37–42.
Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R. & Bartmiński, P., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 26. 99–102.
Szabolcs I. (Szerk.), Darab K., Fórizs J.-né, Földvári Gy., Jassó F. & Várallyay Gy., 1966. A genetikus üzemi talajtérképezés módszerkönyve. Országos Mezőgazdasági Minőségvizsgáló Intézet (OMMI). Budapest.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G. 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science., 66,. 226–238.
Tóth G. , 2009. Hazai szántóink minősítése a D-e-Meter rendszerrel. Agrokémia és Talajtan. 58. 227–242.
USDA, 1993. Soil Survey Division Staff. Soil survey manual. 18. chapter 3. Soil Conservation Service. U.S. Department of Agriculture. http://soils.usda.gov/technical/manual/print_version/chapter3.html.
Venables, W.N. & Ripley, B.D., 2002. Modern applied statistics with S. Fourth. edition. Springer.
Yang, H. , 2013. The case for being automatic: introducing the automatic linear modeling (LINEAR) procedure in SPSS Statistics. Multiple Linear Regression Viewpoints. 39. 27–37.