Authors:
Ramóna Matula Biocentrum KFT, Budapest

Search for other papers by Ramóna Matula in
Current site
Google Scholar
PubMed
Close
and
Tibor Tóth Agrártudományi Kutatóközpont, Budapest

Search for other papers by Tibor Tóth in
Current site
Google Scholar
PubMed
Close
Open access
  • Barótfi, I. , 2000. Környezettechnika. Mezőgazda Kiadó, Budapest

  • Beamish, D. , 2015. Relationship between gamma-ray attenuation and soils in SW England. Geoderma. 259260. 174186.

  • Bódizs, D. , (1997). Laboratóriumi gyakorlat félvezető-detektoros gammaspektroszkópia, BME Nukleáris Technikai Intézet, kézirat

    • Search Google Scholar
    • Export Citation
  • Buchanan, S., Triantafilis, J., Odeh, I.O.A., Subansinghe, R., 2012. Digital soil mapping of compositional particle-size fractions using proximal and remotely sensed ancillary data. Geophysics. 77. (4) 201211.

    • Search Google Scholar
    • Export Citation
  • Burján Z. , (2002). A radon környezeti hatása és forrásanyagának geokéimai vizsgálata, Tudományos Diákköri Dolgozat, Budapest. pp 47.

    • Search Google Scholar
    • Export Citation
  • Carroll, T.R. , 1981. Airborne soil moisture measurement using natural terrestrial gamma radiation. Soil Sci. 132. 358366.

  • Castrignanò, A., Wong, M.T.F., Stelluti, M., De Benedetto, D., Sollitto, D., 2012. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma. 175-176. 7889.

    • Search Google Scholar
    • Export Citation
  • Cook, S.E., Corner, R.J., Groves, P.R., Grealish, G.J., 1996. Use of airborne gamma radiometric data for soil mapping. Aust. J. Soil Res. 34. 183194.

    • Search Google Scholar
    • Export Citation
  • Darnley, A.G. , 1991. The Development of Airborne Gamma-ray Spectrometry: Case Study in Technological innovation and Acceptance. Nuclear Geophysics. 5. (4) 377402.

    • Search Google Scholar
    • Export Citation
  • de Meijer, R.J. , 1998. Heavy minerals: from ‘Edelstein’ to Einstein. J. of Geochemical Expl,. 62. 81103.

  • Dickson, B.L., Scott, K.M., 1997. Interpretation of aerial gamma-ray surveys – adding the geochemical factors. AGSO J. Aust. Geol. Geophy. 17. 187200.

    • Search Google Scholar
    • Export Citation
  • Dierke, C., Werban, U., 2013. Relationships between gamma-ray data and soil properties at an agricultural test site. Geoderma. 199. 9098.

    • Search Google Scholar
    • Export Citation
  • Grasty, R.L., Melender, H., Parker, M., 1991. Airborne gamma-ray spectrometer surveying. Technical Reports Series, No. 323. International Atomic Energy Agency, Vienna.

    • Search Google Scholar
    • Export Citation
  • Gregory, A.F. , 1960. Geological Interpretation of Aeroradioemetric Data. Bull. Geol. Surv. Can. 66. pp 29.

  • Heggemann, T., Welp, G., Amelung, W., Angst, G., Franz, S.O., Koszinski, S., Schmidt, K., Pätzold, S., 2017. Proximal gamma-ray spectrometry for site-independent in situ prediction of soil texture ont en heterogeneous fields in Germany using support vector machines. Soil & Tillage Research. 168. 99109.

    • Search Google Scholar
    • Export Citation
  • Horsfall, K.R. , 1997. Airborne magnetic and gamma-ray data acquisition. AGSO Journal of Geology and Geophysics. 17. 2330.

  • IAEA , 2003. Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC 1363, Vienna.

  • Jaques, A.L., Wellman, P., Whitaker, A., Wyborn, D., 1997. High-resolution geophysics in modern geological mapping. AGSO Journal of Australian Geology & Geophysics. 17. (2) 159173.

    • Search Google Scholar
    • Export Citation
  • Kiss, J.J., de Jong, E. and Bettany, J.R., 1988. The distribution of natural radionuclides in native soils of southern Saskatchewan, Canada. J. Environ. Qual. 17. 437445.

    • Search Google Scholar
    • Export Citation
  • Mahmood, H.S., Hoogmoed, W. B., & van Henten, E. J., 2013. Proximal gamma-ray spectroscopy to predict soil properties using windows and full-spectrum analysis methods. Sensors. 13. (12) 1626316280.

    • Search Google Scholar
    • Export Citation
  • Megumi, K., Mamuro, T., 1977. Concentration of uranium series nuclides in soil particles in relation to their size. Journal of Geophysical Research. 82. 2. 353356.

    • Search Google Scholar
    • Export Citation
  • Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T., 2001. Potassium. Principles of Plant Nutrition, pp 481511.

  • Metternicht, G.I., Zinck, J.A., 2003. Remote sensing of soil salinity: potentials and constraints. Remote sensing of Environment. 85. 120.

    • Search Google Scholar
    • Export Citation
  • Michéli, E., Simon, B., Szegi, T., Stefanovits, P., 2006. Talajtani alapismeretek. Szent István Egyetem egyetemi jegyzet. pp. 2835.

    • Search Google Scholar
    • Export Citation
  • Minty, B. , 1997. Fundamentals of airborne gamma-ray spectrometry. AGSO Journal of Australian Geology and Geophysics. 17. (2) 3950.

  • Nagy, L. G. , 1989. Radiokémia és izotóptechnika. Tankönyvkiadó. Budapest

  • Portela, E.A.C. , 1993. Potassium supplying capacity of northeastern Portuguese soils. Plant and Soil. 154. (1) 1320.

  • Pracilio, G., Adams, M.L., Smettem, K.R.J., Harper, R.J., 2006. Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry. Plant and Soil. 282. 6782.

    • Search Google Scholar
    • Export Citation
  • Rawlins, B.G., Lark, R.M., Webster, R., 2007. Understanding airborne radiometric survey signals across part of eastern England. Earth Surf. Process. Landforms. 32. 15031515.

    • Search Google Scholar
    • Export Citation
  • Ristolainen A. , Farkas C., Tóth T., 2009. Prediction of Soil Properties with Field Geo-electrical Probes. Communications in Soil Science and Plant Analysis. 40. 555565.

    • Search Google Scholar
    • Export Citation
  • Sanderson, D.C.W., Cresswell, A.J., Hardeman, F., Débauche, A., 2004. An airborne gamma ray spectrometry survey of nuclear sites in Belgium. Journal of Environmental Radioactivity. 72. (1) 213224.

    • Search Google Scholar
    • Export Citation
  • Spadoni, M., Voltaggio, M., 2013. Contribution of gamma spectrometry to the textural characterization and mapping of floodplain sediments. Journal of Geochemical Exploration. 125. 2023.

    • Search Google Scholar
    • Export Citation
  • Stefanovits, P., Filep, G., Füleky, G., 1999. Talajtan. Mezőgazda Kiadó, Budapest, pp 814.

  • Szabó, K. Z. , 2009. Talajminták radioaktivitásának vizsgálata Pest megyében, Diplomamunka. ELTE TTK, Kőzettani és Geokémiai Tanszék, Atomfizikai Tanszék, Budapest.

    • Search Google Scholar
    • Export Citation
  • Tóth, T., Kovács, Z.A., Rékási., M., 2019. XRF-measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi-humid soils in two catenas. Geoderma. 342. 106108.

    • Search Google Scholar
    • Export Citation
  • Tóth, T., Pásztor, L., Árvai, M., Sipos, G., Takács, K., Rékási, M., Szatmári, G., Balog, K., Kovács, Z.A., 2018. Review of research on salt-affected soils in the Debrecen agricultural high educational institutions, with special focus on the mapping of Hortobágy. Acta Agraria Debreceniensis (150 years jubilee publication). pp 471484.

    • Search Google Scholar
    • Export Citation
  • Tourlière, B., Perrin, J., Le Berre, P., Pasquet, J.F., 2003. Use of airborne gamma-ray spectrometry for kaolin exploration. Journal of Applied Geophysics. 53. 91102.

    • Search Google Scholar
    • Export Citation
  • Triantafilis, J., Gibbs, I., Earl, N., 2013. Digital soil pattern recognition in the lower Namoi valley using numerical clustering of gamma-ray spectrometry data. Geoderma. 192. 407421.

    • Search Google Scholar
    • Export Citation
  • UNSCEAR Report , 2000. Sources and Effects of Ionising Radiation, UN, New York

  • van Egmond, F.M., Loonstra, E.H., Limburg, J., 2010. Gamma-ray sensor for topsoil mapping: the Mole. In: Viscarra Rossel, R.A., McBratney, A.B., Minasny, B. (eds.), Proximal Soil Sensing. Springer. Dordrecht. pp. 323332.

    • Search Google Scholar
    • Export Citation
  • Van Wijngaarden, M., Venema, L.B., de Meijer, R.J., Zwolsman, J.J.G., Van Os, B., Gieske, J.M.J., 2002. Radiometric sand–mud characterization in the Rhine–Meuse estuary Part A: Fingerprinting. Geomorphology. 43. 82101.

    • Search Google Scholar
    • Export Citation
  • Wilford, J., Minty, B., 2007. The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes. In: Lagacherie, P., McBratney, A.B., Voltz, M. (eds.), Digital Soil Mapping. Elsevier. Amsterdam. 207218.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 284 7
Jan 2024 0 148 6
Feb 2024 0 278 14
Mar 2024 0 5 10
Apr 2024 0 186 3
May 2024 0 112 3
Jun 2024 0 0 0