During the research, we studied the soil conditions in Zala County's forests and examined the effect on the growth of beech forests on these conditions. Data of National Forest Data Base (NFDB) were analysed for investigation. Most of the forests in Zala County are situated less than 150 m above sea level, their location and topography is very diverse. In most of the forests the groundwater level is deeply beneath the surface so the forests can utilize only the amount of precipitation. In accordance with the geological and climatic conditions, Luvisols were formed predominantly, especially the clayic Luvisols and the gleyic Luvisols are the most typical. In addition, there are still Cambisols and stagnic Luvisols as well. In a small percentage, there are forest stands on rendzinic Leptosols, Vertisol, Regosol and Histosol. According to the favourable parent material, forests have got a deep or medium thickness of soil and the typical texture is loam. Based on the research, soil layer thickness and texture had significant impact on the growth of beech forest stands in terms of soil properties.
Act XXXVII. of 2009 about forests, protection of forests and forestry (in Hungarian)
Babos, I., Horváthné Proszt, S., Járó, Z., Király, L., Szodfridt, I., Tóth, B. 1966. Site surveying and soil mapping in forestry. (in Hungarian) Akadémiai Kiadó. Budapest.
Bartha, D., Bidló, A., Berki, I., Király, G., Koloszár, J., Mátyás, C., Vig, P., Halász, G. (eds.) 2006. Forest regions of Hungary. (in Hungarian) Állami Erdészeti Szolgálat. Budapest.
Bartholy, J., Pongrácz, R., and Gelybó, G. 2007. Regional climate change expected in Hungary for 2071–2100. Applied Ecology and Environmental Research. 5. 1–17.
Bartholy, J., Pongrácz, R., Gelybó, G. and Szabó, P. 2008. Analysis of expected climate change in the Carpathian basin using the PRUDENCE results. Időjárás. 112. 249–264.
Bellér, P. (1997): Methods for soil analysis. (in Hungarian) University of Soproni, Sopron. p. 118.
Berki, I., Móricz, N., Rasztovits, E. and Vig, P. 2007. Determination of the drought tolerance limit of beech forests. (in Hungarian) In: Erdő és klíma V. (eds.: Mátyás, C., Vig, P.) Sopron. 213–228.
Berki, I., Rasztovits, E., Móricz, N. and Mátyás, C. 2009. Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communations. 37. 613–616.
Berki, I., Rasztovits, E., Móricz, N. 2014. Health condition assessment of forest stands – A new approach. (in Hungarian) Erdészettudományi Közlemények. 4. (2) 149–155.
Bidló, A., Horváth, A., Gálos, B. 2014. Changing forest sites – Unchanged forests? (in Hungarian) In: IV. Kari Tudományos Konferencia. (eds.: Bidló, A., Horváth, A., Szűcs, P.) NymE Erdőmérnöki Kar. Sopron. 407 p.
Bidló, A. and Horváth, A. 2018. Role of soils in climate change. (in Hungarian) Erdészettudományi Közlemények. 8. (1) 57–71.
Bulla, B. 1962. Physical geography of Hungary. (in Hungarian) Tankönyvkiadó. Budapest.
Czimber, K., Mátyás, C., Bidló, A. and Gálos, B. 2018. Machine learning approximation of Járó-table (table of applicable targeted forest stands and their growth for each forest site). (in Hungarian) Erdészettudományi Közlemények. 8. (1) 93–103.
Czúcz, B., Gálhidy, L. and Mátyás, C. 2011. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science. 68. 9–108.
Csóka, G., Hirka, A. 2011. Alien and invasive forest insects in Hungary (A review). Biotic risks and climate changes in forest. Berichte Freiburger Forstliche Forschung. 89. 54–60.
Dövényi Z. (ed.) 2010. Inventory of microregions in Hungary. (in Hungarian) MTA Földrajztudományi Kutatóintézet. Budapest.
Dövényi Z. (ed.) 2012. Geography of the Carpathian Basin. (in Hungarian) Akadémiai Kiadó. Budapest.
Fekete, L. 1882. Forest site surveying. (in Hungarian) Selmecbánya.
Führer, E., Marosi, G., Jagodics, A., Juhász, I. 2011. A possible effect of climate change in forest management. (in Hungarian) Erdészettudományi Közlemények. 1. 17–28.
Führer, E., Jagodics, A., Juhász, I., Marosi, G. and Horváth, L. 2013. Ecological and economical impacts of climate change on Hungarian forestry practice. Időjárás. 117. 159–174.
Gálos, B., Lorenz, P. H. and Jacob, D. 2007. Will dry events occur more often in Hungary in the future? Environmental Research Letters. 2 (3) 034006 (9pp)
Gálos, B., Lorenz, P. H. and Jacob, D. 2009. Climate change – Will our dry summers more extreme in the 21st century? (in Hungarian) „Klíma-21” Füzetek. 57. 56–63
Gálos, B., Antal, V., Czimber, K. and Mátyás, C. 2014. Forest ecosystems, sewage works and droughts – possibilities for climate change adaptation. In Natural Hazards and Climate Change / Riesgos Naturales y Cambio Climático. (eds.: Santamarta, J. C., Hernandez-Gutiérrez, L. E., and Arraiza, M. P.) Colegio de Ingenieros de Montes. Madrid. 91–104.
Granier, A., Bréda, N., Biron, P., Villette, S. (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest st ands. Ecological Modelling. 116. 269–283.
Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Mergaicová, K., Trombik, J., Dobor, L., Barcza, Z. and Konopka B. 2014. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Central European Forestry Journal. 60. 5–18.
Horváth, A. and Mátyás, C. 2014. Estimation of Increment decline caused by climate change, based on data of a beech provenance trial. Erdészettudományi Közlemények. 4. (2) 91–99.
IPCC , 2007. Climate change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds.: Pachauri, R. K. and Reisinger, A.) IPCC, Geneva, Switzerland. 104. p.
Járó, Z. 1972. The system of forest site evaluation. (in Hungarian) In (Danszky, I. (ed.)) Forest silviculture. Mezőgazdasági Kiadó, Budapest, 47–256.
Kemény, S., Deák A., Komka K. and Vágó, E. 2011. How to use STATISTICA? (in Hungarian) Perfact. Budapest.
Lakatos, F. and Molnár, M. 2009. Mass mortality of beech on Southwest Hungary. Acta Silvatica et Lignaria Hungarica. 5. 75–82.
Mátyás, C. and Borovics, A. 2014. „Agroclimate”. (in Hungarian) Erdészettudományi Közlemények. 4. (2) 7–8.
Mátyás, C., Berki, I., Bidló, A., Csóka, G., Czimber, K., Führer, E., Gálos, B., Gribovszki, Z., Illés, G., Hirka, A., Somogyi, Z. 2018. Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests. 9. (8) 489.
Mezősi, G. 2011. Geography of Hungary. (in Hungarian) Akadémiai Kiadó. Budapest.
SoMoGyi, Z. 2015. Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L.) forests in Zala County, Hungary. Central European Forestry Journal. 62. (1) 3–14.
Stefanovits, P. 1963. Soils of Hungary. (in Hungarian) Akadémiai Kiadó. Budapest.
Stefanovits, P. 1992. Soil science. (in Hungarian) Mezőgazda. Budapest.
Stefanovits, P., Filep, G. and Füleky, G. 1999. Soil sciences. (in Hungarian) Mezőgazda. Budapest.
Szodfridt, I. 1993. Soil site surveying in forestry. (in Hungarian) Mezőgazda. Budapest.
Veperdi, G. 2014. Determination of site quality index based on the mean annual increment of the growing stock at or near the rotation age. (in Hungarian) Erdészettudományi Közlemények. 4. (2) 101–107.
Vitális, G. 1957. Geology of Hungary. (in Hungarian) Műszaki Könyvkiadó. Budapest.
WRB , 2015. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.