Water availability is one of the major physiological factors influencing plant growth and development. An assessment study has been done at the Szent István University, Gödöllő to evaluate and identify the water footprint of protein yield of field crop species. Twelve field crop species (Sugar beet Beta vulgaris, spring and winter barley Hordeum vulgare, winter wheat Triticum aestivum, maize Zea mays, sunflower Helianthus annuus, peas Pisum sativum, potato Solanum tuberosum, alfalfa Medicago sativa, oilseed rape Brassica napus, rye Secale cereale and oats Avena sativa) were involved in the study. Evapotranspiration patterns of the crops studied have been identified by the regular agroclimatology methodology and physiologically reliable protein ranges within crop yields were evaluated.
The results obtained suggest, that water footprint of cereals proved to be the lowest, however maize values were highly affected by the high variability of protein yield. Oilseed crops had considerably high protein yield with medium water efficiency. Alfalfa, potato and sugar beet water footprints were in accordance with their evapotranspiration patterns.
Protein based water footprint assessment seems to be more applicable in crop species evaluations than that of yield based methodologies.
Ding, D., Zhao, Y., Guo, H., Li, X., Schoenau, J., Si, B., (2018). Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water. 10. 1609; doi:10.3390/w10111609
Eberhart, S.A., Russell, W.A., (1966). Stability parameters for comparing varieties. Crop Science. 6. 36–40.
Eser A. , Kassai M.K., Tarnawa Á., Nyárai H.F., Jolánkai M., (2017). Impact of crop year and nitrogen topdressing on the quantity and quality of wheat yield. Columella 4. (1. Suppl.) 157–162.
FAOSTAT (2017): www.fao.org/faostat/
Finlay, K.W. and Wilkinson, G.N., (1963). The analysis of adaptation in a plant breeding program. Australian Journal for Agricultural Resesearch. 14. 742–754.
FM , (2017). Statistical data on agriculture. https://www.ksh.hu/hssz_tagok_fm
Győri Z. (2006). A trágyázás hatása az őszi búza minőségére (Impacts of fertiliser application on winter wheat quality). Agrofórum. 17. (9) 14–16.
Győri Z. , (2008). Complex evaluation of the quality of winter wheat varieties. Cereal Research Communications. 36. 2. 1907–1910 pp
Hoekstra A.Y. , Chapagain A.K., (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resource Management. 21. 35–48.
Hohls, T. , (1995). Analysis of genotype environment interactions. South African J. Sci. 91. 121–124.
Jolánkai M. , Kassai M.K., Tarnawa Á., Pósa B., Birkás M., (2018). Impact of precipitation and temperature on the grain and protein yield of wheat (Triticum aestivum L) varieties. Időjárás. 122. (1) 31–40.
Kassai M.K. , Tarnawa Á., Nyárai H.F., Horváth Cs., Jolánkai M., (2016). Water availability and protein formations interrelations. Acta Hydrologica Slovaca. 17. (2) 260–264.
Kassai M.K. , (1994). Production of leguminous crops in Hungary. Grain Legumes Paris. 5. 24–25.
Máté A. , Kassai M.K., (1993). Növekedésszabályozó anyagok alkalmazása az őszi búza vetőmagtermesztésében. Növénytermelés. 42. (5) 431–437.
Mekonnen, M.M. and Hoekstra, A.Y., (2010a). The green, blue and grey water footprint of farm animals and animal products, value of Water Research Report Series No. 48. UNESCO-IHE.
Mekonnen, M.M., Hoekstra, A.Y., (2010b). A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 14. 1259–1276.
MSZ 6383 , (1998). 824/2000/EK Crop quality standards, Hungary.
Pepó P. , (2010). Adaptive capacity of wheat (Triticum aestivum L.) and maize (Zea mays L.) crop models to ecological conditions. Növénytermelés. 59. (Suppl.) 325–328.
Sváb J. , (1981). Biometriai módszerek a kutatásban. Mezőgazdasági Könyvkiadó, Budapest.
Tarnawa Á. , Kassai M.K., Máté A., Szentpétery Zs., (2009). Precipitation and temperature stress impacting weed-crop coenology performance. Cereal Research Communications. 37. (Suppl.) 149–152.
Tarnawa Á. , Klupács H., Kassai K., Sallai A., (2011). Crop year × crop site interaction for weediness in winter wheat. In: 19th International Poster Day. Transport of water, chemicals and energy in the soil-plant-atmosphere system. Ed.: A. Celková. Slovak Academy of Sciences Institute of Hydrology. Bratislava. pp. 755–758.
Tarnawa Á. , Klupács H., Kassai K., Szentpétery Zs., (2008). Crop year × crop site interaction for weediness of winter wheat. Cereal Research Communications. 36. (Suppl.) 875–878.
Tarnawa Á. , Soós R., Nyárai H.F., Máté A., Szentpétery Zs., (2016). Comparison of SPAD values of various winter cereals from the spring to early summer period. Növénytermelés. 65. (Suppl.) 223–226.
Tarnawa Á. –Szentpétery Zs., Máté A., Csúrné Varga A., Nyárai H.F., (2015). The effect of fertilization on the quality and quantity of winter wheat in small plot experiments. Növénytermelés. 64. (Suppl.) 245–248.
Várallyay, G. , (2008). Extreme soil moisture regime as limiting factor of the plants' water uptake. Cereal Research Communications. 36. (Suppl.) 3–6.
Varga-Haszonits Z. , Varga Z., Lantos Zs., Vámos O., Schmidt R., (2000). Magyarország éghajlati erőforrásainak agroklimatológiai elemzése. Lóriprint. Mosonmagyaróvár. pp. 94–118.
Wichelns D. (2010), Virtual water and water footprints offer limited insight regarding important policy questions. International Journal of Water Resources Development. 26. (4) 639–651.