View More View Less
  • 1 ATK TAKI Talajfizikai és Vízgazdálkodási Osztály
  • | 2 ATK TAKI Talajkémiai és Anyagforgalmi Osztály
  • | 3 ATK TAKI Környezetinformatikai Osztály, Budapest
Open access
  • ABER, J. D., NADELHOFFER, K. J., STEUDLER, P., & MELILLO, J. M. 1989. Nitrogen Saturation in Northern Forest Ecosystems. BioScience. 39. 378386.

    • Search Google Scholar
    • Export Citation
  • ASMAN, W..A., DRUKKER, B., JANSSEN, A.J. 1988. Modelled historical concentrations and depositions of ammonia and ammonium in Europe. Atmospheric Environment. 22. 725735

    • Search Google Scholar
    • Export Citation
  • AVNIMELECH, Y., LAHER, M. 1977. Ammonia volatiliztion from soils: equilibrum considerations. Soil Science Society of America Journal. 41. 10801084

    • Search Google Scholar
    • Export Citation
  • BALDOCCHI, DD., HINCKS, BB ,MEYERS, , TP. 1988. Measuring biosphere-atmoshere exchanges of biologically related gases with micrometeorological methods. Ecology. 69. 13311340

    • Search Google Scholar
    • Export Citation
  • BEHERA, S. N., SHARMA, M., ANEJA, V. P., & BALASUBRAMANIAN, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research. 20. (11) 80928131.

    • Search Google Scholar
    • Export Citation
  • BEUSEN, A..H., BOUWMAN, A.F., HEUBERGER, P..S., VAN DRECHT, G., VAN DER HOEK, K.W. 2008. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment. 42. 60676077

    • Search Google Scholar
    • Export Citation
  • BOUWMAN, AF., BOUMANS, LJM., BATJES, NH. 2002. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochemical Cycles. 16. 111

    • Search Google Scholar
    • Export Citation
  • BOUWMAN, A.F., LEE, D.S., ASMAN, W..A., DENTENER, F.J., HOEK, K.W., OLIVIER, J.G.J. 1997. A global high resolution emission inventory for ammonia. Global Biogeochemical Cycles. 11. 561588.

    • Search Google Scholar
    • Export Citation
  • BOUWMEESTER, R. J. B., VLEK, P. L. G., STUMPE, J. M. 1985. Effect of Environmental Factors on Ammonia Volatilization from a Urea-Fertilized Soil1. Soil Science Society of America Journal. 49. 376.

    • Search Google Scholar
    • Export Citation
  • BRASCHKAT, J., MANNHEIM, T., HORLACHER, D., MARSCHNER, H. 1993. Measurement of ammonia emissions after liquid manure application: I.Construction of a windtunnel system for measurements under field conditions. Zeitschrift Für Pflanzenernährung Und Bodenkunde. 156. 393396.

    • Search Google Scholar
    • Export Citation
  • BUIJSMAN, E, MAAS, JF., ASMAN, WAH. 1987. Anthropogenic NH3 emission in Europe. Atmospheric Environment. 21. 10091022

  • DANG, H., MA, Y., LIU, F., LU, J. 2019. Sensitive detection of ammonia based on quartz-enhanced photoacoustic spetroscopy. Journal of Russian Leaser Research. 40. 265268

    • Search Google Scholar
    • Export Citation
  • DENMEAD, O. T. 1983. Micrometeorological methods for measuring gaseous losses of nitrogen in the field. In: FRENEY, J.R., SIMPSON, J.R. (eds.) Gaseous Loss of Nitrogen from Plant-Soil Systems. Developments in Plant and Soil Sciences, vol 9. Springer, Dordrecht. pp. 133157

    • Search Google Scholar
    • Export Citation
  • DENMEAD O. T. 1994. Measuring fluxes of CH4 and N2O between agricultural systems and the atmosphere. In: MINAMI, K., MOSIER, A., SASS, R (eds.) CH4 and N2O: Global Emissions and Controls from Rice Fields and other Agricultural Industrial Sources. National Institute of Agro-Environmental Sciences, Tsukuba, Japan. pp. 209234.

    • Search Google Scholar
    • Export Citation
  • DENMEAD, O. T., SIMPSON, J.R., FRENEY, J.R. 2016. Ammonia flux into the atmosphere from a grazed pasture. Science, New series. 185. 609610

    • Search Google Scholar
    • Export Citation
  • DIRECTIVE (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants,

  • FAMULARI, D., FOWLER, D., HARGREAVES, K., MILFORD, C., NEMITZ, E., SUTTON, M. A., & WESTON, K. 2005. Measuring eddy covariance fluxes of ammonia using tunable diode laser absorption spectroscopy. Water, Air, & Soil Pollution: Focus. 4. 151158.

    • Search Google Scholar
    • Export Citation
  • FANGMEIER, A., HADWIGER-FANGMEIER, A., VAN DER EERDEN, L., JAGER, H.J. 1994. Atmosheric ammonia on vegetation–a review. Environmental Pollution 86. 4382

    • Search Google Scholar
    • Export Citation
  • FENN, L. B., MIYAMOTO, S. 1981. Ammonia Loss and Associated Reactions of Urea in Calcareous Soils1. Soil Science Society of America Journal, 45. 537.

    • Search Google Scholar
    • Export Citation
  • FERGUSON, R.B., KISSEL, D.E, KOELLIKER, J.K., BASEL., WES. 1984. Ammonia volatilization from surface-applied urea: effect of hydrogen ion buffering capacity. Soil Sci Soc Am J. 48. 578-582

    • Search Google Scholar
    • Export Citation
  • FERM, M., & HELLSTEN, S. 2012. Trends in atmospheric ammonia and particulate ammonium concentrations in Sweden and its causes. Atmospheric Environment. 61. 3039.

    • Search Google Scholar
    • Export Citation
  • FERRARA, R. M., LOUBET, B., TOMASSI, P. DI, BERTOLINI, T., MAUGLIULO, V., CELLIER, P, EUGSTER, W., RANA, G. 2012. Eddy covariance measurement of ammonia fluxes: Comparison of high frequency correction methodologies. Agricultural and Forest Meteorology. 158159. 3042.

    • Search Google Scholar
    • Export Citation
  • FORRESTAL, P. J., HARTY, M., CAROLAN, R., LANIGAN, G. J., WATSON, C. J., LAUGHLIN, R. J., RICHARDS, K. G. 2015. Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland. Soil Use and Management. 32. 92100.

    • Search Google Scholar
    • Export Citation
  • FRENEY, J.R., SIMPSON, J.R. 1983. Volatilization of ammonia. In: FRENEY, J.R., SIMPSON, J.R. (eds.) Gaseous Loss of Nitrogen from Plant-Soil Systems. Developments in Plant and Soil Sciences, vol 9. Springer, Dordrecht. pp. 132.

    • Search Google Scholar
    • Export Citation
  • GRIFFITH, D. W. T., GALLE, B. 2000. Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux-gradient technique. Atmospheric Environment. 34. 10871098

    • Search Google Scholar
    • Export Citation
  • HARPER LA. 2005. Ammonia: measurement issues. In: SADLER EJ., HAM JM., TANNER B., BAKER JM, HATFIELD JL., (eds.) Micrometeorological Measurements in Agricultural Systmems. Americal Society of Agronomy. Madison. pp. 345379.

    • Search Google Scholar
    • Export Citation
  • HARPER, L.A., CATCHPOOLE, R., DAVIS, R., WEIR, K.L. 1983. Ammonia volatilization: Soil, Plant, and Microclimate effects on diurnal and seasonal fluctuations. Agonomy Journal. 75. 212218.

    • Search Google Scholar
    • Export Citation
  • HOLCOMB, J. C., SULLIVAN, D. M., HORNECK, D. A., CLOUGH, G. H. 2011. Effect of Irrigation Rate on Ammonia Volatilization. Soil Science Society of America Journal. 75. 2341.

    • Search Google Scholar
    • Export Citation
  • HORVÁTH, L., Fagerli, H., SUTTON, M.A. 2009. Effect of Sulphur Dioxide Emission Change on Measured and Modelled Concentrations. In: SUTTON, M.A., REIS, S., BALER, S.M.H. (eds.) Atmospheric Ammonia: Detecting emission changes and environmental impacts. Springer Netherlands. pp.181185.

    • Search Google Scholar
    • Export Citation
  • JANZEN, HH., GILBERTSON, C. 1994. Exchange of N-15 among plants in controlled environment studies. Canadian Journal of Soil Science. 74.109110

    • Search Google Scholar
    • Export Citation
  • KRUPA, SV. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution. 124. 179221

  • LAUER, D.A., BOULDIN, D.R., KLAUSNER, S.D. 1976. Ammonia volatilization from dairy manure spread ont he soil surface. Journal of Environment Quality. 5, 134.

    • Search Google Scholar
    • Export Citation
  • LIGHTNER, J. W., MENGEL, D. B., & RHYKERD, C. L. 1990. Ammonia Volatilization from Nitrogen Fertilizer Surface Applied to Orchardgrass Sod. Soil Science Society of America Journal. 54. 14781482

    • Search Google Scholar
    • Export Citation
  • LIVINGSTON, GP., HUTCHINSON, GL. 1995. Enclosure-bases measurements of trace gas exchange: application and sources of error. In: Matson, PA., Harris, RC. (eds.) Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Science, Oxford. pp. 1451.

    • Search Google Scholar
    • Export Citation
  • LOCKYER, D. R. 1984. A system for the measurement in the field of losses of ammonia through volatilisation. Journal of the Science of Food and Agriculture. 35. 837848.

    • Search Google Scholar
    • Export Citation
  • MACHON A. 2011. Egy tájléptékű füves ökológiai rendszer és a légkör közti nitrogén kicserélődés mértékének meghatározása mérések és modellszámítások alapján. Doktori értekezés. Szent István Egyetem, Gödöllő 2011.

    • Search Google Scholar
    • Export Citation
  • MALHI SS., GRANT CA., JOHNSON AM., GILL KS. 2001. Nitrogen fertilization management for no-till cereal production int he Canadian Great Plains: a review. Soil and Tillage Research. 60. 1.

    • Search Google Scholar
    • Export Citation
  • MANNHEIM, T., BRASCHKAT, J., MARSCHNER, H. 1995. Measurement of ammonia emission after liquid manure application: II. Comparison of the wind tunnel and the IHF method under field conditions. Zeitschrift Für Pflanzenernährung Und Bodenkunde. 158. 215219.

    • Search Google Scholar
    • Export Citation
  • MARTIKAINEN, P.J. 1985. Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Applied and Environmental Microbiology. 50. 15191525.

    • Search Google Scholar
    • Export Citation
  • MCINNES, M.J., KISSEL, D.E., KANEMASU, E.T. 1985. Estimating ammonia flux: a comparison between the integrated horizontal flux method and theoretical solutions of the diffusion profile. Agronomy Journal. 77. 884889.

    • Search Google Scholar
    • Export Citation
  • MILLS, H. A., BARKER, A. V., MAYNARD, D. N. 1974. Ammonia Volatilization from Soils. Agronomy Journal. 66. 355.

  • MISSELBROOK, TH., VAN DER WEERDEN, TJ., PAIN, BF., JARVIS, SC., CHAMBERS, BJ., SMITH, KA., PHILLIPS, VR., DEMMERS, TGM. 2000. Ammonia emission factors for UK agriculture. Atmospheric Environment. 34. 871880.

    • Search Google Scholar
    • Export Citation
  • MOAL, J.F., MARTINEZ, J., GUIZIOU, F., COSTE, C.M. 1995. Ammonia volatilization following surface-applied pig and cattle slurry in France. The Journal of Agricultural Science. 125. 245.

    • Search Google Scholar
    • Export Citation
  • MONTENY, G.J., ERISMAN, J.W. 1998. Ammonia emission from dairy cow buildings: a review of measurement techniques, influencing factors and possibilities for reduction. Netherlands Journal of Agricultural Science. 46. 225247.

    • Search Google Scholar
    • Export Citation
  • MORVAN, T., LETERME, P., ARSENE, G., MARY, B. 1997. Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15N-labelled ammonium. European Journal of Agronomy. 7. 181188.

    • Search Google Scholar
    • Export Citation
  • NATHAN, M.V., MALZER, G.L. 1994. Dynamics of ammonia volatilization from turkey manure and urea applied to soil. Soil Science Society of America Journal. 58. 985990.

    • Search Google Scholar
    • Export Citation
  • NI, K., KÖSTER, J.R., SEIDEL, A., PACHOLSKI A. 2015. Field measurement of ammonia emissions after nitrogen fertilization—A comparison between micrometeorological and chamber methods. European Journal of Agronomy. 71. 115122.

    • Search Google Scholar
    • Export Citation
  • NIKOLAJSEN, MT., PACHOLSKI, AS., SOMMER, SG. 2020. Urea Ammonium Nitrate Solution Treated with Inhibitor Technology: Effects on Ammonia Emission Reduction, Wheat Yield and Inorganic N in Soil. Agronomy. 2020. 10. 161.

    • Search Google Scholar
    • Export Citation
  • OLIVIER, J..G., BOUWMAN, A.F., VAN DER HOEK, K.W., BERDOWSKI, J..J. 1998. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environmental Pollution 102. 135148.

    • Search Google Scholar
    • Export Citation
  • OVERREIN, L.N., MOE, P.G. 1967. Factors Affecting Urea Hydrolysis and Ammonia Volatilization in Soil1. Soil Science Society of America Journal. 31. 57.

    • Search Google Scholar
    • Export Citation
  • PAIN, BF., VAN DER WEERDEN, TJ., CHAMBERS, BJ., PHILLIPS, VR., JARVIS, SC. 1998. A new inventory for ammonia emissions from UK agriculture. Atmospheric Environment. 32. 309313.

    • Search Google Scholar
    • Export Citation
  • PAN, B., LAM, S.J., MOSIER, A., LUO, A., CHEN, D. 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems and Environment. 232. 283289.

    • Search Google Scholar
    • Export Citation
  • REIDY, B., MENZI, H. 2007. Assessment of the ammonia abatement potential of different geographical regions and altitudinal zones based on a large-scale farm and manure management survey. Biosystems Engineering. 97. 520531.

    • Search Google Scholar
    • Export Citation
  • ROCHETTE, P., ANGERS, D.A., CHANTIGNY, M.H., MACDONALD, J.D., GASSER, M.O., BERTRAND, N. 2009. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycling Agroecosyst. 84. 7180.

    • Search Google Scholar
    • Export Citation
  • ROCHETTE, P., ANGERS, D. A., CHANTIGNY, M. H., GASSER, M.O., MACDONALD, J. D., PELSTER, D. E., BERTRAND, N. 2013. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? Journal of Environment Quality. 42. 16351641.

    • Search Google Scholar
    • Export Citation
  • RYDEN, JC., MCNEILL, JE. 1984. Application of the Micrometeorological Mass Balance Method to the Determination of Ammonia Loss from a Grazed Sward. Journal of the Science of Food and Agriculture. 35. 12971310.

    • Search Google Scholar
    • Export Citation
  • SCHLESINGER, WH., HARTLEY, AE. 1992. A global budget for atmospheric NH3 Biogeochemisty. 15.191211.

  • SOMMER, S., SCHJOERRING, JK., DENMEAD, OT. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy. 82. 557622.

    • Search Google Scholar
    • Export Citation
  • SHADMAN, S., ROSE, C., & YALIN, A. P. 2016. Open-path cavity ring-down spectroscopy sensor for atmospheric ammonia. Applied Physics B. 122. 19.

    • Search Google Scholar
    • Export Citation
  • SHAH, SB., WESTERMAN, PW. 2006. Measuring Ammonia Concentrations and Emissions fromAgricultural Land and Liquid Surfaces: A Review. Air & Waste Management Association. 56. 945960

    • Search Google Scholar
    • Export Citation
  • SVENSSON, L. A New Dynamic Chamber Technique for Measuring Ammonia Emissions from Land-Spread Manure and Fertilizers. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 44. (1) 3546.

    • Search Google Scholar
    • Export Citation
  • SUTTON, M.A., TANG, Y.S., MINERS, B., FOWLER, D. 2001. A new diffusion denuder system for long-term , regional monitoring of atmospheric ammonia and ammonium. Water, Air, & Soil Pollution: Focus. 1. 145156

    • Search Google Scholar
    • Export Citation
  • TODD, R.W., N.A. COLE, L.A. HARPER T.K. FLESCH, B.H. BAEK. 2005. Ammonia and gaseous nitrogen emissions from a commercial beef cattle feedyard estimated using the flux-gradient method and N:P ratio analysis. In NOWAK, P.J. (ed.), Proc. State of The Science: Animal Manure and Waste Management, National Center for Manure and Animal Waste Management. Jan. 5–7, 2005, San Antonio. pp. 18

    • Search Google Scholar
    • Export Citation
  • TÓTH, E., GELYBÓ, G., Dencső, M., KÁSA, I., BIRKÁS, M., HOREL, Á. 2018. Soil CO2 Emissions in a Long-Term Tillage Treatment Experiment. In: Maria, Ángeles Muñoz; Raúl, Zornoza (szerk.) Soil Management and Climate Change Cambridge (MA), Amerikai Egyesült Államok : Academic Press. pp. 293307.

    • Search Google Scholar
    • Export Citation
  • YAMAMOTO, N., NISHIURA, H., HONJO, T., ISHLKAWA, Y., SUZUKI, K. 1994. Continuous Determination of Atmospheric Ammonia by an Automated Gas Chromatographic System. Analyical Chemistry. 66. 756760.

    • Search Google Scholar
    • Export Citation
  • YANG, J, JIAO, Y., YANG, W.Z., GU, P., BAI, S.G., LIU, L.J. 2018. Review of methods for determination of ammonia volatilization in farmland. Earth and Environmental Science. 113. 012022.

    • Search Google Scholar
    • Export Citation
  • VAN DER HOEK, K.W. 1998. Estimating ammonia emission factors in Europe: summary of the work of the UNECE ammonia expert panel. Atmospheric Environment. 32. 315316.

    • Search Google Scholar
    • Export Citation
  • VOGT, E., DRAGOSITS, U., BRABAN, C.F., THEOBALD, M.R, DORE, A.J., VAN DIJK, N., TANG, Y.S., MCDONALD, C., MURRAY, S., REES, R.M., SUTTON, M.A. 2013. Heterogeneity of atmospheric ammonia at the landscape scale andconsequences for environmental impact assessment. Environmental Pollution 179. 120131.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 12 14
Sep 2021 0 16 26
Oct 2021 0 6 34
Nov 2021 0 23 35
Dec 2021 0 12 35
Jan 2022 0 10 19
Feb 2022 0 0 0