Growing NH4+ content of groundwater results in increasing exchangeable and fixed ammonium ion content of the soil. NH4+ bond in the soil may go again into solution parallel with the dilution of the soil solution but at a slower rate than fixing. This process influences significantly the NH4+ content of the soil. In settlements with no sewerage system the high NH4+ content of sewage flowing out of uninsulated septic tanks may increase the fixed NH4-N content of the soil that could have a significant effect on the quality of groundwater even after the potential disappearance of pollution sources.
In this study the effects of the fixed NH4-N content of the soil around an uninsulated residential septic tank on the purification processes of the groundwater were investigated. The septic tank in the study area was dismantled in 2014 after 27 years of operation as a sewerage system was constructed. When the tank was still in operation in 2012 and 2013, very high, 55–75 mg l-1 NH4+ content was measured in the water of the monitoring well 1 metre from the tank in the course of seasonal sampling. When sewage outflow was terminated in 2014 concentrations decreased right away but even 5 years after pollutant supply was stopped, concentrations (35–57 mg l-1) highly exceeding the pollution limit (0.5 mg l-1) were measured. Considering this very high concentration, it can be assumed that great amount of NH4+ is still released into the groundwater.
In order to prove this, the exchangeable and fixed NH4-N and NO3-N contents of the soil were determined by 20 cm down to a depth of 4 metres (2019). The measurements indicated the significant accumulation of exchangeable and fixed NH4-N in the zone between 220 and 400 cm. Highest fixed NH4-N concentrations of 457 mg l-1 were found between 220 and 240 cm suggesting that sewage outflow was most intense at this depth. Slow decrease in concentrations can be observed in deeper zones but concentrations higher than 350 mg l-1 were measured between 220 and 380 cm. Based on correlation analyses, the quantity of fixed NH4-N shows no correlation with the soil texture thus it can be stated that the vertical pattern of NH4-N content is determined dominantly by sewage outflow and its depth. In the unsaturated zone of the borehole a significant accumulation of NO3-N was also identified. The maximum of NO3-N was found in the zone between 100 and 140 cm. The peak nitrate calculated for NO3- ion with a value >1300 mg kg-1 is 2.5 times the limit set for the nitrate content of the geological medium.
Based on the results, exchangeable and fixed NH4-N contents in the soil are still very high, 5 years after sewage outflow was stopped. The continuous solution of this component still contributes to the high NH4+ content of the groundwater. As a result, the contaminated soil in the immediate environment of the septic tank is still a pollution source.
ALLISON, F. E., DOETSCH, J. H., & ROLLER, E. M., 1953. Availability of fixed ammonium in soils containing different clay minerals. Soil Science. 75. (5) 361–382.
BANERJEE, S., & GUPTA, S., 1982. Az ammónium átalakulása néhány nyugatbengáliai rizsföld elárasztott talajában. Agrokémia és Talajtan. 31. (1–2) 61–72.
BARÓTFI, I., 2000. Környezettechnika. Mezőgazda Kiadó, Budapest.
BEAUCHAMP, E. G., & DRURY, C. F. 1991. Ammonium fixation, release, nitrification, and immobilization in high-and low-fixing soils. Soil Science Society of America Journal. 55. (1) 125–129.
BEUTERS, P., & SCHERER, H. W., 2012. Modification of the standard method for determination of non-exchangeable NH4-N in soil. Plant, Soil and Environment. 58. (12) 557–560.
BURUCS K., 1987. Vízszennyezés Magyarországon 1949–1980. História. 18–21.
CAVALLI, D., CONSOLATI, G., MARINO, P., & BECHINI, L., 2015. Measurement and simulation of soluble, exchangeable, and non-exchangeable ammonium in three soils. Geoderma, 259. 116–125.
FEIGIN, A., & YAALON, D. H., 1974. Non‐exchangeable ammonium in soils of Israel and its relation to clay and parent materials. Journal of Soil Science. 25. (3) 384–397.
GREEN, C. J., BLACKMER, A. M., & YANG, N. C., 1994. Release of fixed ammonium during nitrification in soils. Soil Science Society of America Journal. 58. (5) 1411–1415.
GULYÁS, M., BÉRES, A., ALEKSZA, L., & FÜLEKY, G., 2014. Biogázüzemi erjesztési maradékok mezőgazdasági értéke. Economica. 7. (3) 1585–6216.
HINMAN, W. C., 1964. Fixed ammonium in some Saskatchewan soils. Canadian Journal of Soil Science. 44. (1) 151–157.
HINMAN, W. C., 1966. Ammonium fixation in relation to exchangeable K and organic matter content in two Saskatchewan soils. Canadian Journal of Soil Science. 46. (3). 223–225.
HOFFMANN S., 1991: A talaj ammónium-és nitrátkészletének aránya N-trágyázott kukorica kísérletekben. XXXIII. Georgikon Napok, Keszthely. II. kötet. pp. 76–77 .
HOU, L., HU, B. X., QI, Z., & YANG, H., 2018. Evaluating equilibrium and non‐ equilibrium transport of ammonium in a loam soil column. Hydrological Processes. 32. (1) 80–92.
JAKAB, G. I., KARSAI, G., SZALAI, Z., & SZABÓ, J. A., 2017. Nitrate loss from fertilized crop fields: does slope steepness matter?. Tájökológiai Lapok. 15. (2) 77–84.
IZSÁKI, Z., & IVÁNYI, I., 2005. Effect of Mineral Fertilization on NO3‐N Leaching on Clay Soil. Communications in Soil Science and Plant Analysis. 36. (1–3) 383–391.
JENSEN, E. S., CHRISTENSEN, B. T., & SØRENSEN, L. H., 1989. Mineral-fixed ammonium in clay-and silt-size fractions of soils incubated with 15N-ammonium sulphate for five years. Biology and Fertility of Soils. 8. (4) 298–302.
KÁDÁR, I., & NÉMETH, T., 1993. Nitrát bemosódásának vizsgálata műtrágyázási tartamkísérletben. Növénytermelés. 42. (4) 331–338.
KEERTHISINGHE, G., MENGEL, K., & DE DATTA S. K., 1984. The Release of Nonexchangeable Ammonium (15N Labelled) in Wetland Rice Soils 1. Soil Science Society of America Journal. 48. (2) 291–294.
KOWALENKO C.G.(1978): Nitrogen transformations and transport over 17 months in fieldfallow microplots using 15N. Canadian Journal of Soil Science. 58. 69–76.
KOWALENKO, C. G., & ROSS, G. J., 1980. Studies on the dynamics of" recently" clay-fixed NH4 + using 15N. Canadian Journal of Soil Science. 60. (1) 61–70.
KSH, 2020. Magyarország állandó lakosságának száma az év első napján megyei és települési bontásban. (https://nyilvantarto.hu/hu/statisztikak?stat=kozerdeku)
KUDEYAROV, V. N., 1981. Mobility of fixed ammonium in soil. Ecological Bulletins. 281–290.
LITERÁTHY, P., 1973. Egységes vízvizsgálati módszerek I. Kémiai módszerek, 1. kötet, Vízgazdálkodási Tudományos Kutatóintézet IV. Vízminőségi és Víztechnológiai Főosztálya, 233 p.
LOCH, J., 2001. A talajok N-ellátottságának megítélése. Agrokémia és Talajtan. 50. (1–2) 154–159.
MCBETH IG., 1917. Fixation of ammonium in soils. Journal of Agricultural Research 9. 141–155.
MICHÉLI, E., FUCHS, M., HEGYMEGI, P., & STEFANOVITS, P., 2006. Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan. 55. (1) 19–28.
MOLA ALI ABASIYAN, S., & TOWFIGHI, H., 2018. Kinetics of competitive fixation of potassium and ammonium ions by silt component of soils from different agro-climatic regions. Communications in Soil Science and Plant Analysis. 49. (6) 675–688.
MONOSTORI, I., ÁRENDÁS, T., HOFFMAN, B., GALIBA, G., GIERCZIK, K., SZIRA, F., & VÁGÚJFALVI, A., 2016. Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica. 211.(1) 103–112.
MSZ ISO 21464:1998 SZ. SZABVÁNY – Mintavétel felszín alatti vizekből.
MESTER, T., SZABÓ, G., BESSENYEI, É., KARANCSI, G., BARKÓCZI, N., & BALLA, D., 2017a. The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. Journal of Water and Land Development, 33. (1) 123–129.
MESTER, T., BALLA, D., BOTOS, Á., SZABÓ, G., SÁNDOR, G., NOVÁK, T., 2017b. Az antropogén hatások mértékének és jelentőségének értékelése WRB irányelvek alapján tiszántúli kertek talajaiban. Talajvédelem. Klsz. 179–187.
MESTER, T., BALLA, D., KARANCSI, G., BESSENYEI, É., & SZABÓ, G., 2019. Effects of nitrogen loading from domestic wastewater on groundwater quality. Water SA, 45. (3) 349–358.
MÜLLER, H. W., DOHRMANN, R., KLOSA, D., REHDER, S., & ECKELMANN, W., 2009. Comparison of two procedures for particle‐size analysis: Köhn pipette and X‐ ray granulometry. Journal of Plant Nutrition and Soil Science. 172. (2) 172–179.
NÉMETH, T., 1995. Nitrogen in Hungarian soils—nitrogen management relation to groundwater protection. Journal of Contaminant Hydrology. 20. (3–4) 185–208.
NÉMETH, T., 2002. Talajaink nitrogén-tartalma és a nitrogén trágyázás. Agrártudományi Közlemények. 9. 51–61.
NIEDER, R., BENBI, D. K., & SCHERER, H. W., 2011. Fixation and defixation of ammonium in soils: a review. Biology and Fertility of Soils. 47. (1) 1–14.
NOMMIK, H., 1965. Ammonium fixation and other reactions involving a nonenzymatic immobilization of mineral nitrogen in soil. Soil Nitrogen. 10. 198–258.
NOMMIK, H., & VAHTRAS, K., 1982. Retention and fixation of ammonium and ammonia in soils. Nitrogen in Agricultural Soils. 22. 123–171.
NÓTÁS, E., DEBRECZENI, K., FISCHL, K., & HELTAI, G., 2002. Transformation of nitrogen fertilizers in greenhouse experiments. Agrokémia és Talajtan. 51. (1–2) 147–156.
OSBORNE, G. J., 1976. The significance of intercalary ammonium in representative surface and subsoils from southern New South Wales. Soil Research. 14. (3) 381–388.
PÁSZTOR, L., LABORCZI, A., TAKÁCS, K., SZATMÁRI, G., FODOR, N., ILLÉS, G., FARKAS-IVÁNYI, K., BAKACSI, Z., SZABÓ, J., 2017. Compilation of functional soil maps for the support of spatial planning and land management in Hungary. In Soil Mapping and Process Modeling for Sustainable Land Use Management. Elsevier. (pp. 293–317)
ROBERTSON, W. D., MOORE, T. A., SPOELSTRA, J., LI, L., ELGOOD, R. J., CLARK, I. D., & NEUFELD, J. D., 2012. Natural attenuation of septic system nitrogen by anammox. Groundwater. 50. (4) 541–553.
SCHERER, H. W., & MENGEL, K., 1986. Importance of soil type on the release of nonexchangeable NH 4+ and availability of fertilizer NH 4+ and fertilizer NO 3. Fertilizer Research. 8. (3) 249–258.
SCHERER, H. W., FEILS, E., & BEUTERS, P., 2014. Ammonium fixation and release by clay minerals as influenced by potassium. Plant, Soil and Environment. 60. (7) 325–331.
SMITH, S. J., POWER, J. F., & KEMPER, W. D., 1994. Fixed ammonium and nitrogen availability indexes. Soil Science. 158. (2) 132–140.
SCHNEIDERS, M., & SCHERER, H. W., 1996. The influence of “puddling” on redox potential, fixation and release of nonexchangeable ammonium and its effect on rice growth in flooded soils. In: Proceedings of the 4th ESA Congress, Veldhoven–Wageningen, The Netherlands. pp. 7–11.
SILVA, J.A., BREMNER, J.M., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium. Soil Science Society of America Journal. 30. 587–594.
STEFANOVITS, P.,FILEP, G., Füleky G. 2011. Talajtan, Mezőgazda Kiadó
STEFFENS, D., & SPARKS, D. L., 1997. Kinetics of nonexchangeable ammonium release from soils. Soil Science Society of America Journal. 61. (2) 455–462.
STUCKI, J. W., GOLDEN, D. C., & ROTH, C. B., 1984. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays and Clay Minerals. 32. (5) 350–356.
TANG V., WANG, X.-Z., ZHAO H.-T., FENG K., 2008. Effect of potassium and C/N ratios on conversion of NH4 + in soils. Pedosphere. 18. 539–544
ISO 11732:2005 Water quality — Determination of ammonium nitrogen — Method by flow analysis (CFA and FIA) and spectrometric detection
WAKIDA, F. T., & LERNER, D. N., 2005. Non-agricultural sources of groundwater nitrate: a review and case study. Water Research. 39. (1) 3–16.