Authors:
Tamás Mester Debreceni Egyetem, Tájvédelmi és Környezetföldrajzi Tanszék, Debrecen

Search for other papers by Tamás Mester in
Current site
Google Scholar
PubMed
Close
,
Daniele Cavalli Università degli Studi di Milano, Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Milánó

Search for other papers by Daniele Cavalli in
Current site
Google Scholar
PubMed
Close
,
Dániel Balla Debreceni Egyetem, Komputergrafika és Képfeldolgozás Tanszék , Debrecen

Search for other papers by Dániel Balla in
Current site
Google Scholar
PubMed
Close
, and
György Szabó Debreceni Egyetem, Tájvédelmi és Környezetföldrajzi Tanszék, Debrecen

Search for other papers by György Szabó in
Current site
Google Scholar
PubMed
Close
Open access

Growing NH4+ content of groundwater results in increasing exchangeable and fixed ammonium ion content of the soil. NH4+ bond in the soil may go again into solution parallel with the dilution of the soil solution but at a slower rate than fixing. This process influences significantly the NH4+ content of the soil. In settlements with no sewerage system the high NH4+ content of sewage flowing out of uninsulated septic tanks may increase the fixed NH4-N content of the soil that could have a significant effect on the quality of groundwater even after the potential disappearance of pollution sources.

In this study the effects of the fixed NH4-N content of the soil around an uninsulated residential septic tank on the purification processes of the groundwater were investigated. The septic tank in the study area was dismantled in 2014 after 27 years of operation as a sewerage system was constructed. When the tank was still in operation in 2012 and 2013, very high, 55–75 mg l-1 NH4+ content was measured in the water of the monitoring well 1 metre from the tank in the course of seasonal sampling. When sewage outflow was terminated in 2014 concentrations decreased right away but even 5 years after pollutant supply was stopped, concentrations (35–57 mg l-1) highly exceeding the pollution limit (0.5 mg l-1) were measured. Considering this very high concentration, it can be assumed that great amount of NH4+ is still released into the groundwater.

In order to prove this, the exchangeable and fixed NH4-N and NO3-N contents of the soil were determined by 20 cm down to a depth of 4 metres (2019). The measurements indicated the significant accumulation of exchangeable and fixed NH4-N in the zone between 220 and 400 cm. Highest fixed NH4-N concentrations of 457 mg l-1 were found between 220 and 240 cm suggesting that sewage outflow was most intense at this depth. Slow decrease in concentrations can be observed in deeper zones but concentrations higher than 350 mg l-1 were measured between 220 and 380 cm. Based on correlation analyses, the quantity of fixed NH4-N shows no correlation with the soil texture thus it can be stated that the vertical pattern of NH4-N content is determined dominantly by sewage outflow and its depth. In the unsaturated zone of the borehole a significant accumulation of NO3-N was also identified. The maximum of NO3-N was found in the zone between 100 and 140 cm. The peak nitrate calculated for NO3- ion with a value >1300 mg kg-1 is 2.5 times the limit set for the nitrate content of the geological medium.

Based on the results, exchangeable and fixed NH4-N contents in the soil are still very high, 5 years after sewage outflow was stopped. The continuous solution of this component still contributes to the high NH4+ content of the groundwater. As a result, the contaminated soil in the immediate environment of the septic tank is still a pollution source.

  • ALLISON, F. E., DOETSCH, J. H., & ROLLER, E. M., 1953. Availability of fixed ammonium in soils containing different clay minerals. Soil Science. 75. (5) 361382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BANERJEE, S., & GUPTA, S., 1982. Az ammónium átalakulása néhány nyugatbengáliai rizsföld elárasztott talajában. Agrokémia és Talajtan. 31. (1–2) 6172.

    • Search Google Scholar
    • Export Citation
  • BARÓTFI, I., 2000. Környezettechnika. Mezőgazda Kiadó, Budapest.

  • BEAUCHAMP, E. G., & DRURY, C. F. 1991. Ammonium fixation, release, nitrification, and immobilization in high-and low-fixing soils. Soil Science Society of America Journal. 55. (1) 125129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BEUTERS, P., & SCHERER, H. W., 2012. Modification of the standard method for determination of non-exchangeable NH4-N in soil. Plant, Soil and Environment. 58. (12) 557560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BURUCS K., 1987. Vízszennyezés Magyarországon 1949–1980. História. 1821.

  • CAVALLI, D., CONSOLATI, G., MARINO, P., & BECHINI, L., 2015. Measurement and simulation of soluble, exchangeable, and non-exchangeable ammonium in three soils. Geoderma, 259. 116125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FEIGIN, A., & YAALON, D. H., 1974. Non‐exchangeable ammonium in soils of Israel and its relation to clay and parent materials. Journal of Soil Science. 25. (3) 384397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GREEN, C. J., BLACKMER, A. M., & YANG, N. C., 1994. Release of fixed ammonium during nitrification in soils. Soil Science Society of America Journal. 58. (5) 14111415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GULYÁS, M., BÉRES, A., ALEKSZA, L., & FÜLEKY, G., 2014. Biogázüzemi erjesztési maradékok mezőgazdasági értéke. Economica. 7. (3) 15856216.

    • Search Google Scholar
    • Export Citation
  • HINMAN, W. C., 1964. Fixed ammonium in some Saskatchewan soils. Canadian Journal of Soil Science. 44. (1) 151157.

  • HINMAN, W. C., 1966. Ammonium fixation in relation to exchangeable K and organic matter content in two Saskatchewan soils. Canadian Journal of Soil Science. 46. (3). 223225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HOFFMANN S., 1991: A talaj ammónium-és nitrátkészletének aránya N-trágyázott kukorica kísérletekben. XXXIII. Georgikon Napok, Keszthely. II. kötet. pp. 7677 .

    • Search Google Scholar
    • Export Citation
  • HOU, L., HU, B. X., QI, Z., & YANG, H., 2018. Evaluating equilibrium and non‐ equilibrium transport of ammonium in a loam soil column. Hydrological Processes. 32. (1) 8092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JAKAB, G. I., KARSAI, G., SZALAI, Z., & SZABÓ, J. A., 2017. Nitrate loss from fertilized crop fields: does slope steepness matter?. Tájökológiai Lapok. 15. (2) 7784.

    • Search Google Scholar
    • Export Citation
  • IZSÁKI, Z., & IVÁNYI, I., 2005. Effect of Mineral Fertilization on NO3‐N Leaching on Clay Soil. Communications in Soil Science and Plant Analysis. 36. (1–3) 383391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JENSEN, E. S., CHRISTENSEN, B. T., & SØRENSEN, L. H., 1989. Mineral-fixed ammonium in clay-and silt-size fractions of soils incubated with 15N-ammonium sulphate for five years. Biology and Fertility of Soils. 8. (4) 298302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KÁDÁR, I., & NÉMETH, T., 1993. Nitrát bemosódásának vizsgálata műtrágyázási tartamkísérletben. Növénytermelés. 42. (4) 331338.

    • Search Google Scholar
    • Export Citation
  • KEERTHISINGHE, G., MENGEL, K., & DE DATTA S. K., 1984. The Release of Nonexchangeable Ammonium (15N Labelled) in Wetland Rice Soils 1. Soil Science Society of America Journal. 48. (2) 291294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KOWALENKO C.G.(1978): Nitrogen transformations and transport over 17 months in fieldfallow microplots using 15N. Canadian Journal of Soil Science. 58. 6976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KOWALENKO, C. G., & ROSS, G. J., 1980. Studies on the dynamics of" recently" clay-fixed NH4 + using 15N. Canadian Journal of Soil Science. 60. (1) 6170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KSH, 2020. Magyarország állandó lakosságának száma az év első napján megyei és települési bontásban. (https://nyilvantarto.hu/hu/statisztikak?stat=kozerdeku)

    • Search Google Scholar
    • Export Citation
  • KUDEYAROV, V. N., 1981. Mobility of fixed ammonium in soil. Ecological Bulletins. 281290.

  • LITERÁTHY, P., 1973. Egységes vízvizsgálati módszerek I. Kémiai módszerek, 1. kötet, Vízgazdálkodási Tudományos Kutatóintézet IV. Vízminőségi és Víztechnológiai Főosztálya, 233 p.

    • Search Google Scholar
    • Export Citation
  • LOCH, J., 2001. A talajok N-ellátottságának megítélése. Agrokémia és Talajtan. 50. (1–2) 154159.

  • MCBETH IG., 1917. Fixation of ammonium in soils. Journal of Agricultural Research 9. 141155.

  • MICHÉLI, E., FUCHS, M., HEGYMEGI, P., & STEFANOVITS, P., 2006. Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan. 55. (1) 1928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MOLA ALI ABASIYAN, S., & TOWFIGHI, H., 2018. Kinetics of competitive fixation of potassium and ammonium ions by silt component of soils from different agro-climatic regions. Communications in Soil Science and Plant Analysis. 49. (6) 675688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MONOSTORI, I., ÁRENDÁS, T., HOFFMAN, B., GALIBA, G., GIERCZIK, K., SZIRA, F., & VÁGÚJFALVI, A., 2016. Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica. 211.(1) 103112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MSZ ISO 21464:1998 SZ. SZABVÁNY – Mintavétel felszín alatti vizekből.

  • MESTER, T., SZABÓ, G., BESSENYEI, É., KARANCSI, G., BARKÓCZI, N., & BALLA, D., 2017a. The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. Journal of Water and Land Development, 33. (1) 123129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MESTER, T., BALLA, D., BOTOS, Á., SZABÓ, G., SÁNDOR, G., NOVÁK, T., 2017b. Az antropogén hatások mértékének és jelentőségének értékelése WRB irányelvek alapján tiszántúli kertek talajaiban. Talajvédelem. Klsz. 179187.

    • Search Google Scholar
    • Export Citation
  • MESTER, T., BALLA, D., KARANCSI, G., BESSENYEI, É., & SZABÓ, G., 2019. Effects of nitrogen loading from domestic wastewater on groundwater quality. Water SA, 45. (3) 349358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MÜLLER, H. W., DOHRMANN, R., KLOSA, D., REHDER, S., & ECKELMANN, W., 2009. Comparison of two procedures for particle‐size analysis: Köhn pipette and X‐ ray granulometry. Journal of Plant Nutrition and Soil Science. 172. (2) 172179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NÉMETH, T., 1995. Nitrogen in Hungarian soils—nitrogen management relation to groundwater protection. Journal of Contaminant Hydrology. 20. (3–4) 185208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NÉMETH, T., 2002. Talajaink nitrogén-tartalma és a nitrogén trágyázás. Agrártudományi Közlemények. 9. 5161.

  • NIEDER, R., BENBI, D. K., & SCHERER, H. W., 2011. Fixation and defixation of ammonium in soils: a review. Biology and Fertility of Soils. 47. (1) 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOMMIK, H., 1965. Ammonium fixation and other reactions involving a nonenzymatic immobilization of mineral nitrogen in soil. Soil Nitrogen. 10. 198258.

    • Search Google Scholar
    • Export Citation
  • NOMMIK, H., & VAHTRAS, K., 1982. Retention and fixation of ammonium and ammonia in soils. Nitrogen in Agricultural Soils. 22. 123171.

    • Search Google Scholar
    • Export Citation
  • NÓTÁS, E., DEBRECZENI, K., FISCHL, K., & HELTAI, G., 2002. Transformation of nitrogen fertilizers in greenhouse experiments. Agrokémia és Talajtan. 51. (1–2) 147156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OSBORNE, G. J., 1976. The significance of intercalary ammonium in representative surface and subsoils from southern New South Wales. Soil Research. 14. (3) 381388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PÁSZTOR, L., LABORCZI, A., TAKÁCS, K., SZATMÁRI, G., FODOR, N., ILLÉS, G., FARKAS-IVÁNYI, K., BAKACSI, Z., SZABÓ, J., 2017. Compilation of functional soil maps for the support of spatial planning and land management in Hungary. In Soil Mapping and Process Modeling for Sustainable Land Use Management. Elsevier. (pp. 293317)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ROBERTSON, W. D., MOORE, T. A., SPOELSTRA, J., LI, L., ELGOOD, R. J., CLARK, I. D., & NEUFELD, J. D., 2012. Natural attenuation of septic system nitrogen by anammox. Groundwater. 50. (4) 541553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SCHERER, H. W., & MENGEL, K., 1986. Importance of soil type on the release of nonexchangeable NH 4+ and availability of fertilizer NH 4+ and fertilizer NO 3. Fertilizer Research. 8. (3) 249258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SCHERER, H. W., FEILS, E., & BEUTERS, P., 2014. Ammonium fixation and release by clay minerals as influenced by potassium. Plant, Soil and Environment. 60. (7) 325331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SMITH, S. J., POWER, J. F., & KEMPER, W. D., 1994. Fixed ammonium and nitrogen availability indexes. Soil Science. 158. (2) 132140.

  • SCHNEIDERS, M., & SCHERER, H. W., 1996. The influence of “puddling” on redox potential, fixation and release of nonexchangeable ammonium and its effect on rice growth in flooded soils. In: Proceedings of the 4th ESA Congress, Veldhoven–Wageningen, The Netherlands. pp. 711.

    • Search Google Scholar
    • Export Citation
  • SILVA, J.A., BREMNER, J.M., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium. Soil Science Society of America Journal. 30. 587594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • STEFANOVITS, P.,FILEP, G., Füleky G. 2011. Talajtan, Mezőgazda Kiadó

  • STEFFENS, D., & SPARKS, D. L., 1997. Kinetics of nonexchangeable ammonium release from soils. Soil Science Society of America Journal. 61. (2) 455462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • STUCKI, J. W., GOLDEN, D. C., & ROTH, C. B., 1984. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays and Clay Minerals. 32. (5) 350356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TANG V., WANG, X.-Z., ZHAO H.-T., FENG K., 2008. Effect of potassium and C/N ratios on conversion of NH4 + in soils. Pedosphere. 18. 539544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ISO 11732:2005 Water quality — Determination of ammonium nitrogen — Method by flow analysis (CFA and FIA) and spectrometric detection

    • Search Google Scholar
    • Export Citation
  • WAKIDA, F. T., & LERNER, D. N., 2005. Non-agricultural sources of groundwater nitrate: a review and case study. Water Research. 39. (1) 316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 0 1251 6
Nov 2024 0 1539 6
Dec 2024 0 887 1
Jan 2025 0 191 8
Feb 2025 0 258 2
Mar 2025 0 220 1
Apr 2025 0 0 0