Authors:
Bettina Kelemen Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Bettina Kelemen in
Current site
Google Scholar
PubMed
Close
,
Anna Füzy Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Anna Füzy in
Current site
Google Scholar
PubMed
Close
,
Imre Cseresnyés Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Imre Cseresnyés in
Current site
Google Scholar
PubMed
Close
,
István Parádi Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest
ELTE TTK Növényélettani és Molekuláris Növénybiológiai Tanszék, Budapest

Search for other papers by István Parádi in
Current site
Google Scholar
PubMed
Close
,
Ramóna Kovács Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Ramóna Kovács in
Current site
Google Scholar
PubMed
Close
,
Kálmán Rajkai Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Kálmán Rajkai in
Current site
Google Scholar
PubMed
Close
, and
Tünde Takács Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Tünde Takács in
Current site
Google Scholar
PubMed
Close
Open access

The effects of cadmium (Cd) stress and arbuscular mycorrhizal fungus (AMF) inoculation were investigated in wheat [Triticum aestivum L. cv. TC-33] under controlled conditions. The experiments aimed to reveal what stress responses belong to the different levels of Cd load in the growth medium (0; 1; 2,5 and 5 mg Cd kg-1 substrate). To detect the effect of Cd stress, we compared plant physiological and growth indicators measured with both in situ and destructive methods. Electrical capacitance (CR) was evaluated during the experiments as a method to indicate stress responses through of Cd-induced root system changes.

During the growth period, the photosynthetic activity (Fv/Fm), the chlorophyll content index (CCI) of the leaves, and the CR of the root-soil system were monitored in situ. After harvest, the membrane stability index (MSI), the cadmium and phosphorus concentrations of the plants, the root dry mass (RDM), the shoot dry mass (SDM) and the leaf area (LA) were measured. The root colonization of AM fungi was estimated by microscopic examination. Data matrices were evaluated with principal component analysis (PCA) which had been proved to be a good statistical method to the sensitivity between measurement methods.

Taking all parameters into account in the PCA, a complete separation was found between the contaminated and non-contaminated variants along the main component PC1. The measured values of the Cd1 treatment sometimes overlapped with that of control plants, but differed from that of the Cd2 and Cd3 doses. The parameters well reflected that AMF inoculation alleviated the stress caused by Cd. PCA shows a visible effect of AM, but the separation between mycorrhizal and non-mycorrhizal plants is weaker than that between Cd contaminated and non-treated ones. The Cd stress significantly decreased the Fv/Fm, CCI, CR, SDM, RDM and LA. The CR and growth parameters proved to be the best indicators to characterize the Cd phytotoxicity in the TC-33 wheat cultivar.

  • ANJUM, N. A., UMAR, S., & IQBAL, M., 2014. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation. Environmental Science and Pollution Research. 21. 1028610293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BRUNDRETT, M. C., & TEDERSOO, L., 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 220. 11081115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CHAVES, M. M., FLEXAS, J., & PINHEIRO, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany. 103. 551560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CI, D., JIANG, D., WOLLENWEBER, B., DAI, T., JING, Q., & CAO, W. (2010). Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum,32. (2) 365373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSATHÓ, P., 1994. A környezet nehézfém szennyezettsége és az agrártermelés. Magyar Tudományos Akadémia Talajtani és Agrokémiai Kutató Intézete. Budapest. Hungary. 172.

    • Search Google Scholar
    • Export Citation
  • CSERESNYÉS, I., TAKÁCS, T., VÉGH, R. K., ANTON, A. & RAJKAI, K., 2013. Electrical impedance and capacitance method: a new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. European Journal of Soil Biology. 54. 2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSERESNYÉS, I., TAKÁCS, T., KOVÁCS, R., FÜZY, A., & RAJKAI, K., 2018. Szárazságstressz és mikorrhiza gombák búza gyökérnövekedésére gyakorolt hatásának monitorozása elektromos kapacitás mérésével. Agrokémia és Talajtan. 67. 213225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSERESNYÉS, I., TAKÁCS, T., SEPOVICS, B., KOVÁCS, R., FÜZY, A., PARÁDI, I., & RAJKAI, K., 2019. Electrical characterization of the root system: a noninvasive approach to study plant stress responses. Acta Physiologiae Plantarum. 41. 169.

    • Search Google Scholar
    • Export Citation
  • EL-BELTAGI, H. S., MOHAMED, A. A., & RASHED, M. M., 2010. Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae. 2. 7682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FERROL, N., GONZÁLEZ-GUERRERO, M., VALDERAS, A., BENABDELLAH, K., & AZCÓN-AGUILAR, C., 2009. Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews. 8. 551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FÜZY, A., TÓTH, T., & BIRÓ, B., 2007. Mycorrhizal colonisation can be altered by the direct and indirect effect of drought and salt in a split root experiment. Cereal Research Communications. 35. 401404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FÜZY, A., KOVÁCS, R., CSERESNYÉS, I., PARÁDI, I., SZILI-KOVÁCS, T., KELEMEN, B., RAJKAI, K., & TAKÁCS, T., 2019. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiologiae Plantarum. 41. 56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GÖHRE, V., & PASZKOWSKI, U., 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 223. 11151122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JHA, C. K., & SARAF, M., 2015. Plant growth promoting rhizobacteria (PGPR): a review. Journal of Agricultural Research and Development. 5. 108119.

    • Search Google Scholar
    • Export Citation
  • HUANG, M., ZHOU, S., SUN, B., & ZHAO, Q., 2008. Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan. China. Science of the Total Environment. 405. 5461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KHAN, M. A., KHAN, S., KHAN, A., & ALAM, M., 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment. 601. 15911605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KOVÁCS, V., GONDOR, O. K., SZALAI, G., DARKÓ, É., MAJLÁTH, I., JANDA, T., & PÁL, M., 2014. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. Journal of Hazardous Materials. 280. 1219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KRISHNAMOORTHY, R., VENKATRAMANAN, V., SENTHILKUMAR, M., ANANDHAM, R., KUMUTHA, K., & SA, T., 2019. Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi. In: SHAH, S., VENKATRAMANAN, V., PRASAD, R. (eds.): Sustainable Green Technologies for Environmental Management. Springer. Singapore. 6785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LAI, H. Y., 2015. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana. Water, Air & Soil Pollution. 226. 2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LUX, A., MARTINKA, M., VACULÍK, M., & WHITE, P. J. 2011. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany. 62. 2137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LI, L., ZHANG, Q., & HUANG, D., 2014. A review of imaging techniques for plant phenotyping. Sensors. 14. 2007820111.

  • MSZ 21470-50:2006: Környezetvédelmi talajvizsgálatok. Az összes és az oldható toxikus elem-, a nehézfém- és a króm (VI) tartalom meghatározása.

    • Search Google Scholar
    • Export Citation
  • PARMAR, P., KUMARI, N., & SHARMA, V. 2013. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies. 54. 45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PARNISKE, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology. 6. 763775.

  • PHILLIPS, J. M. & HAYMAN, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55. 157160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R CORE TEAM, 2019.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • RIZWAN, M., ALI, S., ADREES, M., RIZVI, H., ZIA-UR-REHMAN, M., HANNAN, F., & OK, Y. S., 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research. 23. 1785917879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RYAN, M. H., VAN HERWAARDEN, A. F., ANGUS, J. F., & KIRKEGAARD, J. A., 2005. Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant and Soil. 270. 275286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SAIRAM, R. K., DESHMUKH, P.S., & SHUKLA, D.S., 1997. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science. 178. 171178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SHAHABIVAND, S., MAIVAN, H. Z., GOLTAPEH, E. M., SHARIFI, M., & ALILOO, A. A., 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry. 60. 5358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SHANYING, H. E., XIAOE, Y. A. N. G., ZHENLI, H. E., & BALIGAR, V. C. 2017. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere. 27. 421438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SIMON, L. 2014. Potentially harmful elements in agricultural soils. In: BINI, C. & BECH, J. (eds.), PHEs, Environment and Human Health. Potentially Harmful Elements in the Environment and the Impact on Human Health. Springer, Dordrecht, Heidelberg, New York, London pp. 85137., 142150.

    • Search Google Scholar
    • Export Citation
  • SMITH, S. E., & SMITH, F. A., 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 104. 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SZABÓ, A., POKOVAI, K., RAGÁLYI, P., RÉKÁSI, M., SÁNDOR, R., BERNHARDT, B., & CSATHÓ, P., 2019. Nehézfém-és egyéb toxikus mikroelem-terhelés tartamhatása a talajból mért visszanyerési százalékuk alakulására szabadföldi kísérletekben. Agrokémia és Talajtan. 68. 293314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TAKÁCS, T., & VÖRÖS, I., 2003. Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agronomica Hungarica. 51. 347354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TAKÁCS, T., 2012. Site-specific optimization of arbuscular mycorrhizal fungi mediated phytoremediation. In: ZAIDI, A., WANI, P. A., KHAN, M. S. (eds.): Toxicity of heavy metals to legumes and bioremediation. Springer. Viennal. 179202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TAKÁCS, T., FÜZY, A., RAJKAI, K., & CSERESNYÉS, I., 2014. Investigation of arbuscular mycorrhizal status and functionality by electrical impedance and capacitance measurement. Acta Biologica Szegediensis. 58. 5559.

    • Search Google Scholar
    • Export Citation
  • TAWARAYA, K., 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition. 49. 655668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TROUVELOT, A., KOUGH, J.L., & GIANINAZZI-PEARSON, V., 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et methods d’estimation ayant une signification fonctionnelle. In: GIANINAZZI-PEARSON, V., GIANINAZZI, S. (eds.): Physiological and genetical aspects of mycorrhizae. INRA. Paris. 217221.

    • Search Google Scholar
    • Export Citation
  • VERSLUES, P. E., AGARWAL, M., KATIYAR‐AGARWAL, S., ZHU, J., & ZHU, J. K., 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal. 45. 523539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WAHID, A., ARSHAD, M., & FAROOQ, M., 2009. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. In: LICHTFOUSE, E., (ed.): Organic Farming, Pest Control and Remediation of Soil P. 371403. Springer. Dordrecht.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WOBBROCK, J. O., FINDLATER, L., GERGLE, D., & HIGGINS, J. J., 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In KONSTAN, J. A., CHI, E., HÖÖK, K. (eds.): Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press. New York. 143146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZHANG, Z., LIU, C., WANG, X., & SHI, G., 2013. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Physiologiae Plantarum. 35. 21052112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 0 4 5
Jul 2023 0 4 4
Aug 2023 0 16 6
Sep 2023 0 15 9
Oct 2023 0 159 9
Nov 2023 0 66 4
Dec 2023 0 35 1