The effects of cadmium (Cd) stress and arbuscular mycorrhizal fungus (AMF) inoculation were investigated in wheat [Triticum aestivum L. cv. TC-33] under controlled conditions. The experiments aimed to reveal what stress responses belong to the different levels of Cd load in the growth medium (0; 1; 2,5 and 5 mg Cd kg-1 substrate). To detect the effect of Cd stress, we compared plant physiological and growth indicators measured with both in situ and destructive methods. Electrical capacitance (CR) was evaluated during the experiments as a method to indicate stress responses through of Cd-induced root system changes.
During the growth period, the photosynthetic activity (Fv/Fm), the chlorophyll content index (CCI) of the leaves, and the CR of the root-soil system were monitored in situ. After harvest, the membrane stability index (MSI), the cadmium and phosphorus concentrations of the plants, the root dry mass (RDM), the shoot dry mass (SDM) and the leaf area (LA) were measured. The root colonization of AM fungi was estimated by microscopic examination. Data matrices were evaluated with principal component analysis (PCA) which had been proved to be a good statistical method to the sensitivity between measurement methods.
Taking all parameters into account in the PCA, a complete separation was found between the contaminated and non-contaminated variants along the main component PC1. The measured values of the Cd1 treatment sometimes overlapped with that of control plants, but differed from that of the Cd2 and Cd3 doses. The parameters well reflected that AMF inoculation alleviated the stress caused by Cd. PCA shows a visible effect of AM, but the separation between mycorrhizal and non-mycorrhizal plants is weaker than that between Cd contaminated and non-treated ones. The Cd stress significantly decreased the Fv/Fm, CCI, CR, SDM, RDM and LA. The CR and growth parameters proved to be the best indicators to characterize the Cd phytotoxicity in the TC-33 wheat cultivar.
ANJUM, N. A., UMAR, S., & IQBAL, M., 2014. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation. Environmental Science and Pollution Research. 21. 10286–10293.
BRUNDRETT, M. C., & TEDERSOO, L., 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 220. 1108–1115.
CHAVES, M. M., FLEXAS, J., & PINHEIRO, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany. 103. 551–560.
CSATHÓ, P., 1994. A környezet nehézfém szennyezettsége és az agrártermelés. Magyar Tudományos Akadémia Talajtani és Agrokémiai Kutató Intézete. Budapest. Hungary. 172.
CSERESNYÉS, I., TAKÁCS, T., VÉGH, R. K., ANTON, A. & RAJKAI, K., 2013. Electrical impedance and capacitance method: a new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. European Journal of Soil Biology. 54. 25–31.
CSERESNYÉS, I., TAKÁCS, T., KOVÁCS, R., FÜZY, A., & RAJKAI, K., 2018. Szárazságstressz és mikorrhiza gombák búza gyökérnövekedésére gyakorolt hatásának monitorozása elektromos kapacitás mérésével. Agrokémia és Talajtan. 67. 213–225.
CSERESNYÉS, I., TAKÁCS, T., SEPOVICS, B., KOVÁCS, R., FÜZY, A., PARÁDI, I., & RAJKAI, K., 2019. Electrical characterization of the root system: a noninvasive approach to study plant stress responses. Acta Physiologiae Plantarum. 41. 169.
EL-BELTAGI, H. S., MOHAMED, A. A., & RASHED, M. M., 2010. Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae. 2. 76–82.
FERROL, N., GONZÁLEZ-GUERRERO, M., VALDERAS, A., BENABDELLAH, K., & AZCÓN-AGUILAR, C., 2009. Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews. 8. 551.
FÜZY, A., TÓTH, T., & BIRÓ, B., 2007. Mycorrhizal colonisation can be altered by the direct and indirect effect of drought and salt in a split root experiment. Cereal Research Communications. 35. 401–404.
FÜZY, A., KOVÁCS, R., CSERESNYÉS, I., PARÁDI, I., SZILI-KOVÁCS, T., KELEMEN, B., RAJKAI, K., & TAKÁCS, T., 2019. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiologiae Plantarum. 41. 56.
GÖHRE, V., & PASZKOWSKI, U., 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 223. 1115–1122.
JHA, C. K., & SARAF, M., 2015. Plant growth promoting rhizobacteria (PGPR): a review. Journal of Agricultural Research and Development. 5. 108–119.
HUANG, M., ZHOU, S., SUN, B., & ZHAO, Q., 2008. Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan. China. Science of the Total Environment. 405. 54–61.
KHAN, M. A., KHAN, S., KHAN, A., & ALAM, M., 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment. 601. 1591–1605.
KOVÁCS, V., GONDOR, O. K., SZALAI, G., DARKÓ, É., MAJLÁTH, I., JANDA, T., & PÁL, M., 2014. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. Journal of Hazardous Materials. 280. 12–19.
KRISHNAMOORTHY, R., VENKATRAMANAN, V., SENTHILKUMAR, M., ANANDHAM, R., KUMUTHA, K., & SA, T., 2019. Management of Heavy Metal Polluted Soils: Perspective of Arbuscular Mycorrhizal Fungi. In: SHAH, S., VENKATRAMANAN, V., PRASAD, R. (eds.): Sustainable Green Technologies for Environmental Management. Springer. Singapore. 67–85.
LAI, H. Y., 2015. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana. Water, Air & Soil Pollution. 226. 2246.
LUX, A., MARTINKA, M., VACULÍK, M., & WHITE, P. J. 2011. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany. 62. 21–37.
LI, L., ZHANG, Q., & HUANG, D., 2014. A review of imaging techniques for plant phenotyping. Sensors. 14. 20078–20111.
MSZ 21470-50:2006: Környezetvédelmi talajvizsgálatok. Az összes és az oldható toxikus elem-, a nehézfém- és a króm (VI) tartalom meghatározása.
PARMAR, P., KUMARI, N., & SHARMA, V. 2013. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies. 54. 45.
PARNISKE, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology. 6. 763–775.
PHILLIPS, J. M. & HAYMAN, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55. 157–160.
R CORE TEAM, 2019.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
RIZWAN, M., ALI, S., ADREES, M., RIZVI, H., ZIA-UR-REHMAN, M., HANNAN, F., & OK, Y. S., 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research. 23. 17859–17879
RYAN, M. H., VAN HERWAARDEN, A. F., ANGUS, J. F., & KIRKEGAARD, J. A., 2005. Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant and Soil. 270. 275–286.
SAIRAM, R. K., DESHMUKH, P.S., & SHUKLA, D.S., 1997. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science. 178. 171–178.
SHAHABIVAND, S., MAIVAN, H. Z., GOLTAPEH, E. M., SHARIFI, M., & ALILOO, A. A., 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry. 60. 53–58.
SHANYING, H. E., XIAOE, Y. A. N. G., ZHENLI, H. E., & BALIGAR, V. C. 2017. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere. 27. 421–438.
SIMON, L. 2014. Potentially harmful elements in agricultural soils. In: BINI, C. & BECH, J. (eds.), PHEs, Environment and Human Health. Potentially Harmful Elements in the Environment and the Impact on Human Health. Springer, Dordrecht, Heidelberg, New York, London pp. 85–137., 142–150.
SMITH, S. E., & SMITH, F. A., 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 104. 1–13.
SZABÓ, A., POKOVAI, K., RAGÁLYI, P., RÉKÁSI, M., SÁNDOR, R., BERNHARDT, B., & CSATHÓ, P., 2019. Nehézfém-és egyéb toxikus mikroelem-terhelés tartamhatása a talajból mért visszanyerési százalékuk alakulására szabadföldi kísérletekben. Agrokémia és Talajtan. 68. 293–314.
TAKÁCS, T., & VÖRÖS, I., 2003. Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agronomica Hungarica. 51. 347–354.
TAKÁCS, T., 2012. Site-specific optimization of arbuscular mycorrhizal fungi mediated phytoremediation. In: ZAIDI, A., WANI, P. A., KHAN, M. S. (eds.): Toxicity of heavy metals to legumes and bioremediation. Springer. Viennal. 179–202.
TAKÁCS, T., FÜZY, A., RAJKAI, K., & CSERESNYÉS, I., 2014. Investigation of arbuscular mycorrhizal status and functionality by electrical impedance and capacitance measurement. Acta Biologica Szegediensis. 58. 55–59.
TAWARAYA, K., 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition. 49. 655–668.
TROUVELOT, A., KOUGH, J.L., & GIANINAZZI-PEARSON, V., 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et methods d’estimation ayant une signification fonctionnelle. In: GIANINAZZI-PEARSON, V., GIANINAZZI, S. (eds.): Physiological and genetical aspects of mycorrhizae. INRA. Paris. 217–221.
VERSLUES, P. E., AGARWAL, M., KATIYAR‐AGARWAL, S., ZHU, J., & ZHU, J. K., 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal. 45. 523–539.
WAHID, A., ARSHAD, M., & FAROOQ, M., 2009. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. In: LICHTFOUSE, E., (ed.): Organic Farming, Pest Control and Remediation of Soil P. 371–403. Springer. Dordrecht.
WOBBROCK, J. O., FINDLATER, L., GERGLE, D., & HIGGINS, J. J., 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In KONSTAN, J. A., CHI, E., HÖÖK, K. (eds.): Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press. New York. 143–146.
ZHANG, Z., LIU, C., WANG, X., & SHI, G., 2013. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Physiologiae Plantarum. 35. 2105–2112.