A makroaggregátumok stabilitásának meghatározására számos mérési módszer és értékelési lehetőség létezik. Ezek önállóan eredményesen alkalmazhatók az aggregátumok stabilitásának vizsgálatára (valamilyen romboló hatást megpróbálnak szimulálni, valamilyen körülményt megpróbálnak standardizálni stb.), ám ezek a módszerek egymással nehezen összevethetők. Az évek során jogosan merült fel a szabványosítás igénye, ám a kialakult nemzetközi szabvány módszertana igen bonyolult, éppen ezért csak kevesen kívánják azt alkalmazni. Hasonló a helyzet a különféle stabilitási mutatók esetében is: sokféle mutató használatos, ezek különkülön jól jellemezhetik a talajok aggregátum-stabilitását, de a mutatók párhuzamos használata több esetben eltérő stabilitási sorrendet eredményez a különféle talajoknál. Megfelelő megoldás lehetne, ha definiálni tudnánk, hogy mely módszer és mely mutató pontosan mit is fejez ki és mikor, milyen probléma vizsgálatakor, mely mutatót és mely módszert kívánatos alkalmazni. Kutatásainkat a továbbiakban ilyen irányban is folytatni kívánjuk.
There are several measurement and evaluation methods for determining the stability of macro-aggregates. These can be used effectively independently to test the stability of aggregates (attempting to simulate some destructive effect, attempting to standardise some condition, etc.), but they are difficult to compare to each other. Over the years, the need for standardization has rightly arisen, but the standard method developed is very complicated, which is why few people want to apply it.
Similarly, many different indicators are used, each of which can give a good characterisation of the aggregate stability of soils, but the parallel use of indicators often results in different stability rankings for different soils. An appropriate solution should be defined which method and which indicator expresses what exactly and when, and which indicator and which method should be used for which problem. We intend to continue our research in this direction.
In this manuscript we summarized the main macro-aggregate stability measurements and indices, reviewed the international and Hungarian scientific literature.
Ahmadi, A., Neyshabouri, M.R., Rouhipour, H. & Asadi, H., 2011. Fractal Dimension Of Soil Aggregates As An Index Of Soil Erodibility. J Hydrol. 400. 305–311.
Amelung, W., Kaiser, K., Kammerer, G. & Sauer, G., 2002. Organic Carbon At Soil Particle Surfaces-Evidence From X-Ray Photoelectron Spectroscopy And Surface Abrasion. Soil Sci. Soc. Am. J. 66. 1526–1530.
Amézketa, E., 1999. Soil Aggregate Stability: A Review. J. Sustain. Agr. 14. (2–3) 83–151.
Amézketa, E., Aragüés, R., Carranza, R. & Urgel, B., 2003. Macro-And Micro-Aggregate Stability Of Soils Determined By A Combination Of Wet-Sieving And Laser-Ray Diffraction. Span. J. Agri. Res. 1. (4) 83–94.
Angers, D.A. & Mehuys, G.R., 1989. Effects Of Cropping On Carbohydrate Content And Water-Stable Aggregation Of A Clay Soil. Can. J. Soil Sci. 69. 373–380.
Azamathulla, H.Md., Chang, C.K., Ghani, A.Ab., Ariffin, J., Zakaria, N.A. & Abu Hasan, Z., 2009. An Anfis-Based Approach For Predicting The Bed Load For Moderately Sized Rivers. J. Hydro-Environ. Res. 3. (1) 35–44.
Baldock, J.A., & Kay, B.D., 1987. Influence Of Cropping History And Chemical Treatments On The Water-Stable Aggregation Of A Silt Loam Soil. Can. J. Soil Sci. 67. 501–511.
Ballenegger R., 1933. A Rög Fizikája. A Kis Akadémia Könyvtára. Vii. Kötet. Budapest.
Ballenegger R., 1953. Talajvizsgálati Módszerkönyv. Mezőgazdasági Kiadó. Budapest.
Ballanger R. & Di Gléria J., 1962. Talaj-És Trágyavizsgálati Módszerek. Mezőgazdasági Kiadó. Budapest.
Bartlová, J., Badalíková, B., Pospíšilová, L., Pokorný, E. & Šarapatka, B., 2015. Water Stability Of Soil Aggregates In Different Systems Of Tillage. Soil Wat. Res. 10. (3) 147–154.
Barzegar, A.R., Murray, R.S., Churchman, G.J. & Rengasamy, P., 1994. The Strength Of Remoulded Soils As Affected By Exchangeable Cations And Dispersible Clay. Aust. J. Soil Res. 32. (2) 185–199.
Beare, M.H. & Bruce, R.R., 1993. A Comparison Of Methods For Measuring Water-Stable Aggregates: Implications For Determining Environmental Effects On Soil Structure, Geoderma. 56. (1–4) 87–104.
Bieganowski, A., Ryżak, M. & Witokowska-Walczak, B., 2010. Determination Of Soil Aggregate Disintegration Dynamics Using Laser Diffraction. Clay Min. 45. 23–34.
Blackman, J.D., 1992. Seasonal Variation In The Aggregate Stability Of Downland Soils. Soil Use Manage. 8. (4) 142–150.
Blanco-Moure, N., Moret-Fernández, D. & López, M.V., 2012. Dynamics Of Aggregate Destabilization By Water In Soils Under Long-Term Conservation Tillage In Semiarid Spain. Catena. 99. 34–41.
Bocco, M., Willington, E. & Arias, M., 2010. Comparison Of Regression And Neural Networks Models To Estimate Solar Radiation. Chil. J. Agr. Res. 70. (3) 428–435.
Bruce-Okine, E. & Lal, R., 1975. Soil Erodibility As Determined By The Raindrop Technique. Soil Sci. 119. 149–157.
Burke, W., Gabriels, D. & Bouma, J., (eds.). 1986. Soil Structure Assessment. Balkema Publisher, Rotterdam.
Cambardella, C.A. & Elliott, E.T., 1993. Methods For Separation And Characterization Of Soil Organic Matter Fractions. Geoderma. 56. 449–457.
Cañasveras, J.C., Barrón, V., Del Campillo, M.C., Torrent, J. & Gómez, J.A., 2010. Estimation Of Aggregate Stability Indices In Mediterranean Soils By Diffuse Reflectance Spectroscopy. Geoderma. 158. 78–84.
Chaney, K., & Swift, R.S., 1986. Studies An Aggregate Stability II. The Effect Of Humic Substances On The Stability Of Reformed Soil Aggregates. J. Soil Sci. 37. 337–343.
Coleman, C.D., Callaham, M.A Jr.. & Crossley Jr., D.A., 2018. Secondary Production: Activities Of Heterotrophic Organisms – Microbes. In: Fundamentals Of Soil Ecology (3rd Ed.). Academic Press. pp 47–76.
Concaret, J., 1967. Etude Des Mécanismes De Destruction Des Agrégats De Terre Au Contact De Solutions Aqueuses. Ann. Agron. 18. 99–144.
De Leenheer, L. & De Boodt, M., 1967. Aggregate Stability Determination By The Change In Mean Weight Diameter. In: De Boodt, M. (Ed.) West-European Methods for Soil Structure Determination, West-European Working Group on Soil Structure of the International Soil Science Society. Gent, VI. pp 28–31.
Di Gléria J., Klimes-Szmik A. & Dvoracsek M., 1957. Talajfizika És Talajkolloidika. Akadémiai Kiadó. Budapest.
Dickson, E.L., Rasiah, V. & Groenevelt, P.H., 1991. Comparison Of Four Prewetting Techniques In Wet Aggregate Stability Determination. Can. J. Soil Sci. 71. 67–72.
Dunai A. & Tóth Z., 2015. Szerves-És Műtrágyázás Tartamhatása A Talajaggregátumok Stabilitására Agyagbemosódásos Barna Erdőtalajon. Agrokem. Talajtan. 64. 29–52.
Dvoracsek M., 1950. A Talaj Rögszerkezetének Vizsgálata. Agrártud. 2. 703–708.
Dvoracsek M., 1952. Adatok A Talajszerkezet Vízállóságának Fiziko-Kémiai Alapjaihoz. In: Agrokémiai Kutató Intézet 1950-Es Évkönyve. Mezőgazdasági Kiadó. Budapest. 141–158.
Dvoracsek, m., 1953. Hidrométeres Súlymérés Alkalmazása És Egy Gépesített Megoldás A Nedves Szitálásos Talajszerkezetvizsgálati Módszerekhez. Agrokem. Talajtan. 2. 425–436.
Dvoracsek M., Klimes-Szmik A. & B. Fejér S. 1953. A Kötöttség Befolyása A Talajmorzsák Vízállóságára. Agrokem. Talajtan. 2. 17–26.
Eijkelkamp, 2008. 08.13 Wet Sieving Apparatus Operation Instructions. Giesbeek, The Netherlands: Eijkelkamp
Elliott, E.T., 1986. Aggregate Structure And Carbon, Nitrogen, And Phosphorus In Native And Cultivated Soils. Soil Sci. Soc. Am. J. 50. 627–633.
Emerson, W.W. & Greenland, D.J., 1990. Soil Aggregates—Formation And Stability. In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B. & Herbillon, A.). Plenum Press, New York, N.Y., U.S.A. pp 485–511.
Gardner, W.R., 1956. Representation Of Soil Aggregate-Size Distributions By A Logarithmic-Normal Distribution. Soil Sci. Soc. Am. Pro. 20. (15) l51–153.
Haynes, R.J., & Francis, C.S., 1993. Changes In Microbiological Biomass C, Soil Carbohydrate Composition And Aggregate Stability Induced By Growth Of Selected Crop And Forage Species Under Field Conditions. J. Soil Sci. 44. 665–675.
Haynes, R.J. & Swift, R.S., 1990. Stability Of Soil Aggregates In Relation To Organic Constituents And Soil Water Content. J. Soil Sci. 41. 73–83.
Hbirkou, C., Martius, C., Khamzina, A., Lamers, J.P.A., Welp, G. & Amelung, W. 2011. Reducing Topsoil Salinity And Raising Carbonstocks Through Afforestation In Khorezm, Uzbekistan. J. Arid Environ. 75. (2) 146–155.
Hénin, S., Monnier, G. & Combeau, A., 1958. Methode Pour L’étude De La Stabilité Structurale Des Sols. Ann. Agron. 9. (1) 71–90. (in French)
Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego.
Huisz, A. 2007. A Talaj Aggregátum-Stabilitása Az Egységes Aggregátum-Stabilitási Mutató Tükrében. Acta Agr. Debr. Különszám. 26. 83–99.
ISO 10930: 2012. Soil Quality–Measurement Of The Stabilty Of Soil Aggregates Subjected To The Action Of Water. International Organization For Standarization, Geneva, Switzerland.
Jakab, G., Dobos, E., Madarász, B., Szalai, Z. & Szabó, A.J., 2019: Spatial And Temporal Changes In Infiltration And Aggregate Stability: A Case Study Of A Subhumid Irrigated Cropland. Water. 11. 876.
Jastrow, J.D. & Miller, R.M., 1991. Methods For Assessing The Effects Of Biota On Soil Structure. Agr. Ecosyst. Environ. 34. (1-4) 279–303.
John, B., Yamashita, T., Ludwig, B. & Flessa, H., 2005. Storage Of Organic Carbon In Aggregate And Density Fractions Of Silty Soils Under Different Types Of Land Use. Geoderma. 128. (1–2) 63–79.
Kachinsky, N.A., 1965. Soil Physics. Kolos Publisher, Moscow. (in Russian)
Kay, B.D., 1997. Soil Structure And Organic Carbon: A Review. In: Soil Processes And The Carbon Cycle (Eds.: Lal, R., Kimble, J.M., Follett, R.F. & Stewart B.A.). Crc, Boca Raton, Fl. pp 169–197.
Kay, B.D. & Dexter, A.R., 1990. Influence Of Aggregate Diameter, Surface Area And Antecedent Water Content On The Dispersibility Of Clay. Can. J. Soil Sci. 70. (4) 655–671.
Kemper, W.D. & Koch, E.J., 1966. Aggregate Stability Of Soils From Western United States And Canada. USDA-ARS Techn. Bull. 1355. Washington, DC.
Kemper, W.D. & Rosenau, R.C. 1986. Aggregate Stability And Size Distribution. In: Methods Of Soil Analysis. Part 1. Physical And Mineralogical Methods (ed.: Klute, A.) 2nd ed. Agronomy Monograph 9. ASA And SSSA, Madison, Wi. 425–442.
Klimes-Szmik A., 1962. A Talaj Fizikai Tulajdonságainak Vizsgálata. In: BALLENEGGER, R. & DI GLÉRIA, J. (szerk.): Talaj- és trágyavizsgálati módszerek. Mezőgazdasági Kiadó. 83–134.
Krámer M., 1952. Talajmorzsák Vízállóságának Vizsgálata. Agrokem. Talajtan. 1. 495–510.
Lal, R. & Shukla, M.K., 2004. Principles Of Soil Physics. Marcel Dekker, New York.
Le Bissonnais, Y., 1988. Analysis Of The Mechanisms Of Disaggregation And The Mobilisation Of Particles Of Soil Under The Action Of Rain. Phd Thesis. University Of Orléans, (in French)
Le Bissonnais, Y., 1996. Aggregate Stability And Assessment Of Soil Crustability And Erodibility: Theory And Methodology. Eur J. Soil Sci. 47. (4) 425–437.
Le Bissonnais, Y., Bruand. A. & Jamagne, M., 1989. Laboratory Experimental Study Of Soil Crusting: Relation Between Aggregates Breakdown And Crust Structure. Catena. 16. 377–392.
Lehrsch, G.A. & Jolley, P.M., 1992. Temporal Changes In Wet Aggregate Stability. Transactions of the ASAE. 35. (2) 493–498.
Le Souder, C., Le Bissonnais, Y. & Robert, M., 1991. Influence Of A Mineral Conditioner On The Mechanisms Of Disaggregation And Sealing Of Soil Surface. Soil Sci. 152. 395–402.
Lobe, I., Sandhage-Hofmann, A., Brodowski, S., Du Preez, C.C. & Amelung, W., 2011. Aggregate Dynamics And Associated Soilorganic Matter Contents As Influenced By Prolonged Arable Cropping In The South African Highveld. Geoderma. 162. (3-4) 251–259.
Loch, R.J., & Foley, J.L., 1994. Measurement Of Aggregate Breakdown Under Rain: Comparison With Tests Of Water Stability And Relationships With Field Measurements Of Infiltration. Aust. J. Soil Res. 32. 701–720.
Lu, J., Zheng, F., Li, G., Bian, F. & An, J., 2016. The Effects Of Raindrop Impact And Runoff Detachment On Hillslope Soil Erosion And Soil Aggregate Loss In The Mollisol Region Of Northeast China. Soil Till. Res. 161. 79–85.
Major I., 1974. Aggregátum-Minőségi Elemzések Felhasználása A Talaj Erodálhatósága Megítélésében. Kísérl. Közl. Növényt. LXVI/A. 19–34.
Makó A., 2018. Új Talajfizikai Mérő- És Becslőmódszerek Kidolgozása Vizes És Nemvizes Folyadékfázist Tartalmazó Talajokra. MTA Doktori Értékezés. Budapest.
Marquetant K., 1952. Gyors Talajszerkezet Vizsgálati Módszer. Agrártud. 4. (2) 69–71.
Marshall, T.J. & Holmes, J.W., 1979. Soil Physics. Cambridge University Press, Cambridge.
Martinez-Mena, M., Deeks, L.K. & Williams A.G., 1999. An Evaluation Of Fragmentation Fractal Dimension Technique To Determine Soil Erodibility. Geoderma. 90. (1-2) 87–89.
Matkin, E.A. & Smart, P. 1987. A Comparison Of Tests Of Soil Structural Stability. J. Soil Sci. 38. 123–135.
Mazurak, A.P., 1950. Effect Of Gaseous Phase On Water-Stable Synthetic Aggregates. Soil Sci. 69. (2) 135–148.
Mccalla, T.M., 1944. Water Drop Method Of Determining Stability Of Soil Structure. Soil Sci. 58. (2) 117–123.
Meyer, L. & Von Rennenkampff, U., 1936. A New Automatic Apparatus For Crumb Analysis By Tinlin’s Method. Ztschr. Pflanz. Dung. 43. 268–280. (in German)
Mulla, D.J., Huyck, L.M. & Reganold, J.P., 1992. Temporal Variation In Aggregate Stability On Conventional And Alternative Farms. Soil Sci. Soc. Am. J. 56. 1620–1624.
Murer, E.J., Baumgarten, A., Eder, G., Gerzabek, M.H., Kandeler, E. & Rampazzo, N., 1993. An Improved Sieving Machine For Estimation Of Soil Aggregate Stability (SAS). In: International Workshop On Methods Of Research On Soil Structure/Soil Biota Interrelationships (eds.: Brussaard, L. & Koostra, M.J.). Geoderma. 56. 539–547.
Murray, R.S. & Quirk, J.P. 1990. Interparticle Forces In Relation To The Stability Of Soil Aggregates. In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J.). NATO ASI Series (Series B: Physics), vol 214. Springer, Boston, Ma. pp 439–461.
Nichols, K.A. & Toro, M., 2011. A Whole Soil Stability Index (WSSI) For Evaluating Soil Aggregation. Soil Till. Res. 111. (2) 99–104.
Niewczas, J. & Witkowska-Walczak, B., 2003. Index Of Soil Aggregate Stability As Linear Function Value Of Transition Matrix Elements. Soil Till. Res. 70. (2) 121–130.
Niewczas, J. & Witkowska-Walczak, B., 2003. Use Of Simplex Algorithm For Determination Of Soil Aggregation Extreme Changes. Int. Agrophys. 17. 169–174.
Nimmo, J.R., 2004, Aggregation: Physical Aspects. In:. Encyclopedia Of Soils In The Environment (ed.: Hillel, D.). Academic Press. London. pp 28–35.
North, P.F., 1976.Towards An Absolute Measurement Of Soil Structural Stability Using Ultrasound. J. Soil Sci. 27. (4) 451–459.
Oades, J.M., 1990. Associations Of Colloids In Soil Aggregates, In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B. & Herbillon, A.). NATO, AI Series, Series B: Physics Vol. 215, Plenum Press, Nw York. pp 463–483.
Oades, J.M., 1993. The Role Of Biology In The Formation, Stabilization And Degradation Of Soil Structure. In: International Workshop On Methods Of Research On Soil Structure/Soil Biota Interrelationships (eds.: Brussaard, L. & Koostra, M.J.). Geoderma. 56. 377–400.
Oades, J.M. & Waters, A.G., 1991. Aggregate Hierarchy In Soils. Aust. J. Soil Res. 29. (6) 815–828.
Peng, X.H., Horn, R. & Hallett, P., 2015. Soil Structure And Its Functions In Ecosystems: Phase Matter & Scale Matter. Soil Till. Res. 146. 1–3.
Perfect, E. & Kay, B.D. 1991. Fractal Theory Applied To Soil Aggregation. Soil Sci. Soc. Am. J. 55. 1552–1558.
Perfect, E. & Kay, B.D., 1995. Applications Of Fractals In Soil And Tillage Research: A Review. Soil Till. Res. 36. (1-2) 1–20.
Pojasok, T., & Kay, B.D., 1990. Assessment Of A Combination Of Wet Sieving And Turbidimetry To Characterize The Structural Stability Of Moist Aggregates. Can. J. Soil Sci. 70. (1) 33–42.
Rajkai, K., Tóth, B., Barna, G., Hernádi, H., Kocsis, M. & Makó, A., 2015. Particle-Size And Organic Matter Effects On Structure And Water Retention Of Soils. Biologia. 70. 1456–1461.
Roberson E.B., Sarig, S. & Firestone, M.K., 1991. Cover Crop Management Of Polysaccharide-Mediated Aggregation In An Orchard Soil. Soil Sci. Soc. Am. J. 55. 734–739.
Rohošková, M. & Valla, M., 2004: Comparison Of Two Methods For Aggregate Stability Measurement–A Review. Plant Soil Environ. 50. (8) 379–382.
Salako, F.K., 2006. Fractal Scaling Of Soil Particles In Agricultural Landscapes Of Nigerian Savannas. Int. Agrophys. 20. (4) 337–344.
Savvinov, N.I., 1931. Soil Structure And Its Stability. In: Virgin, Fallow, And Old Arable Lands (ed.: Williams, V.R.). Sel’kolkhozgiz. Moscow. (in Russian)
Sekera, F. & Brunner, A., 1943. Beiträge Zur Methodik Der Gareforschung. Z. Pflanz. Bodenkunde. 29. 169–212.
Sekiguchi, R., Saito, H., Tanaka, H. & Kohgo, Y., 2021. Temperature Dependence Of Volcanic Ash Soil Aggregate Stability: Effects Of Fertilizer Application. Soil Till. Res. 207. 104870.
Six, J., Bossuyt, H., Degryze, S. & Denef, K., 2004. A History Of Research On The Link Between (Micro)Aggregates, Soil Biota, And Soil Organic Matter Dynamics. Soil Till. Res. 79. 7–31.
Six, J., Elliott, E.T. & Paustian, K., 1999. Aggregate And Soil Organic Matter Dynamics Under Conventional And No‐Tillage Systems. Soil Sci. Soc. Am. J. 63. 1350–1358.
Six, J., Elliott, E.T. & Paustian, K., 2000. Soil Structure And Soil Organic Matter: II. A Normalized Stability Index And The Effect Of Mineralogy. Soil Sci. Soc. Am. J. 64. 1042–1049.
Stefanovits P., Filep G. & Füleky G., 1999. Talajtan. Mezőgazda Kiadó, Budapest.
Strickland, T.C., Sollins, P., Schimel, D.S. & Kerle, E.A., 1988. Aggregation And Aggregate Stability In Forest And Range Soils. Soil Sci. Soc. Am. J. 52. (3) 829–833.
Sullivan, L.A., 1990. Soil Organic Matter, Air Encapsulation And Water-Stable Aggregation. J. Soil Sci. 41. 529–534.
Sun, H., Larney, F.J. & Bullock, M.S., 1995. Soil Amendments And Water-Stable Aggregation Of A Desurfaced Dark Brown Chernozem. Can. J. Soil Sci. 75. 319–325.
Tavares-Filho, J., Feltran, C.T.M., De Oliveira, J.F. & De Almeida, E., 2012. Modelling Of Soil Penetration Resistance For An Oxisol Under No-Tillage. Rev. Bras. Cienc. Solo. 36. (1) 89–95.
Tisdall, J.M., 1996. Formation Of Soil Aggregates And Accumulation Of Soil Organic Matter. In: Structure And Organic Matter Storage In Agricultural Soils (eds.: Carter, M.R. & Stewart, B.A.). Crc Press, Boca Raton, Fl, Usa. 57–96.
Tisdall, J.M. & Oades, J.M., 1979. Stabilization Of Soil Aggregates By The Root Systems Of Ryegrass. Aust. J. Soil Res. 17. 429–441.
Tisdall, J.M. & Oades, J.M., 1982. Organic Matter And Water-Stable Aggregates In Soils. J. Soil Sci. 33. (2) 141–163.
Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N. & Kögel-Knabner, I., 2018. Microaggregates In Soils. J. Plant Nutr. Soil Sc. 181. (1) 104–136.
Tyulin, A.F., 1928. Problems Of Soil Structure. II. Aggregate Analysis As An Auxiliary Method For Assessing The Real Soil Structure.” In: Results of Works of the Agrochemical Department, Perm Experimental Station, on Flax (Perm) (in Russian).
Vageler, P., 1932. Der Kationen- Und Wasserhaushalt Des Mineralbodens: Vom Standpunkt Der Physikalischen Chemie Und Seine Bedeutung Für Die Land- Und Forstwirtschaftliche Praxis. Springer, Verlag Berlin Heidelberg.
Van Bavel, C.H.M., 1949. Mean Weight Diameter Of Soil Aggregates As A Statistical Index Of Aggregation. Soil Sci. Soc. Am. Pro. 14. 20–23.
Van Steenbergen, M., Cambardella, C.A., Elliott, E.T. & Merckx, R., 1991. Two Simple Indexes For Distributions Of Soil Components Among Size Classes. Agr. Ecosyst. Environ. 34. (1-4) 335–340.
Várallyay G., 1993. A Talaj Szerkezeti Állapotának Jellemzése. In: BUZÁS, I. (Szerk.): Talaj- És Agrokémiai Vizsgálati Módszerkönyv 1. INDA 4231 Kiadó, Budapest. pp 71–82.
Williams, B.G., Greenland, D.J., Lindstrom, G.R. & Quirk, J.P., 1966. Techniques For The Determination Of The Stability Of Soil Aggregates. Soil Sci. 101. 157–163.
Williams, N.D. & Petticrew, E.L., 2009. Aggregate Stability In Organically And Conventionally Farmed Soils. Soil Use Manage. 25. (3) 284–292.
Yoder, R.E., 1936. A Direct Method Of Aggregate Analysis Of Soils And A Study Of Physical Nature Of Erosion Losses. J. Am. Soc. Agron. 28. 337–351.