Authors:
Viktória Labancz MATE, Szent István Campus, Környezettudományi Intézet, Talajtani Tanszék, Gödöllő;

Search for other papers by Viktória Labancz in
Current site
Google Scholar
PubMed
Close
,
Gyöngyi Barna ATK TAKI, Talajfizikai és Vízgazdálkodási Osztály, Budapest;

Search for other papers by Gyöngyi Barna in
Current site
Google Scholar
PubMed
Close
,
Tamás Szegi MATE, Szent István Campus, Környezettudományi Intézet, Talajtani Tanszék, Gödöllő;

Search for other papers by Tamás Szegi in
Current site
Google Scholar
PubMed
Close
, and
András Makó ATK TAKI, Talajfizikai és Vízgazdálkodási Osztály, Budapest;
MATE, Georgikon Campus, Környezettudományi Intézet, Környezeti Fenntarthatóság Tanszék, Keszthely

Search for other papers by András Makó in
Current site
Google Scholar
PubMed
Close
Open access

A makroaggregátumok stabilitásának meghatározására számos mérési módszer és értékelési lehetőség létezik. Ezek önállóan eredményesen alkalmazhatók az aggregátumok stabilitásának vizsgálatára (valamilyen romboló hatást megpróbálnak szimulálni, valamilyen körülményt megpróbálnak standardizálni stb.), ám ezek a módszerek egymással nehezen összevethetők. Az évek során jogosan merült fel a szabványosítás igénye, ám a kialakult nemzetközi szabvány módszertana igen bonyolult, éppen ezért csak kevesen kívánják azt alkalmazni. Hasonló a helyzet a különféle stabilitási mutatók esetében is: sokféle mutató használatos, ezek különkülön jól jellemezhetik a talajok aggregátum-stabilitását, de a mutatók párhuzamos használata több esetben eltérő stabilitási sorrendet eredményez a különféle talajoknál. Megfelelő megoldás lehetne, ha definiálni tudnánk, hogy mely módszer és mely mutató pontosan mit is fejez ki és mikor, milyen probléma vizsgálatakor, mely mutatót és mely módszert kívánatos alkalmazni. Kutatásainkat a továbbiakban ilyen irányban is folytatni kívánjuk.

There are several measurement and evaluation methods for determining the stability of macro-aggregates. These can be used effectively independently to test the stability of aggregates (attempting to simulate some destructive effect, attempting to standardise some condition, etc.), but they are difficult to compare to each other. Over the years, the need for standardization has rightly arisen, but the standard method developed is very complicated, which is why few people want to apply it.

Similarly, many different indicators are used, each of which can give a good characterisation of the aggregate stability of soils, but the parallel use of indicators often results in different stability rankings for different soils. An appropriate solution should be defined which method and which indicator expresses what exactly and when, and which indicator and which method should be used for which problem. We intend to continue our research in this direction.

In this manuscript we summarized the main macro-aggregate stability measurements and indices, reviewed the international and Hungarian scientific literature.

  • Ahmadi, A., Neyshabouri, M.R., Rouhipour, H. & Asadi, H., 2011. Fractal Dimension Of Soil Aggregates As An Index Of Soil Erodibility. J Hydrol. 400. 305311.

    • Search Google Scholar
    • Export Citation
  • Amelung, W., Kaiser, K., Kammerer, G. & Sauer, G., 2002. Organic Carbon At Soil Particle Surfaces-Evidence From X-Ray Photoelectron Spectroscopy And Surface Abrasion. Soil Sci. Soc. Am. J. 66. 15261530.

    • Search Google Scholar
    • Export Citation
  • Amézketa, E., 1999. Soil Aggregate Stability: A Review. J. Sustain. Agr. 14. (2–3) 83151.

  • Amézketa, E., Aragüés, R., Carranza, R. & Urgel, B., 2003. Macro-And Micro-Aggregate Stability Of Soils Determined By A Combination Of Wet-Sieving And Laser-Ray Diffraction. Span. J. Agri. Res. 1. (4) 8394.

    • Search Google Scholar
    • Export Citation
  • Angers, D.A. & Mehuys, G.R., 1989. Effects Of Cropping On Carbohydrate Content And Water-Stable Aggregation Of A Clay Soil. Can. J. Soil Sci. 69. 373380.

    • Search Google Scholar
    • Export Citation
  • Azamathulla, H.Md., Chang, C.K., Ghani, A.Ab., Ariffin, J., Zakaria, N.A. & Abu Hasan, Z., 2009. An Anfis-Based Approach For Predicting The Bed Load For Moderately Sized Rivers. J. Hydro-Environ. Res. 3. (1) 3544.

    • Search Google Scholar
    • Export Citation
  • Baldock, J.A., & Kay, B.D., 1987. Influence Of Cropping History And Chemical Treatments On The Water-Stable Aggregation Of A Silt Loam Soil. Can. J. Soil Sci. 67. 501511.

    • Search Google Scholar
    • Export Citation
  • Ballenegger R., 1933. A Rög Fizikája. A Kis Akadémia Könyvtára. Vii. Kötet. Budapest.

  • Ballenegger R., 1953. Talajvizsgálati Módszerkönyv. Mezőgazdasági Kiadó. Budapest.

  • Ballanger R. & Di Gléria J., 1962. Talaj-És Trágyavizsgálati Módszerek. Mezőgazdasági Kiadó. Budapest.

  • Bartlová, J., Badalíková, B., Pospíšilová, L., Pokorný, E. & Šarapatka, B., 2015. Water Stability Of Soil Aggregates In Different Systems Of Tillage. Soil Wat. Res. 10. (3) 147154.

    • Search Google Scholar
    • Export Citation
  • Barzegar, A.R., Murray, R.S., Churchman, G.J. & Rengasamy, P., 1994. The Strength Of Remoulded Soils As Affected By Exchangeable Cations And Dispersible Clay. Aust. J. Soil Res. 32. (2) 185199.

    • Search Google Scholar
    • Export Citation
  • Beare, M.H. & Bruce, R.R., 1993. A Comparison Of Methods For Measuring Water-Stable Aggregates: Implications For Determining Environmental Effects On Soil Structure, Geoderma. 56. (1–4) 87104.

    • Search Google Scholar
    • Export Citation
  • Bieganowski, A., Ryżak, M. & Witokowska-Walczak, B., 2010. Determination Of Soil Aggregate Disintegration Dynamics Using Laser Diffraction. Clay Min. 45. 2334.

    • Search Google Scholar
    • Export Citation
  • Blackman, J.D., 1992. Seasonal Variation In The Aggregate Stability Of Downland Soils. Soil Use Manage. 8. (4) 142150.

  • Blanco-Moure, N., Moret-Fernández, D. & López, M.V., 2012. Dynamics Of Aggregate Destabilization By Water In Soils Under Long-Term Conservation Tillage In Semiarid Spain. Catena. 99. 3441.

    • Search Google Scholar
    • Export Citation
  • Bocco, M., Willington, E. & Arias, M., 2010. Comparison Of Regression And Neural Networks Models To Estimate Solar Radiation. Chil. J. Agr. Res. 70. (3) 428435.

    • Search Google Scholar
    • Export Citation
  • Bruce-Okine, E. & Lal, R., 1975. Soil Erodibility As Determined By The Raindrop Technique. Soil Sci. 119. 149157.

  • Burke, W., Gabriels, D. & Bouma, J., (eds.). 1986. Soil Structure Assessment. Balkema Publisher, Rotterdam.

  • Cambardella, C.A. & Elliott, E.T., 1993. Methods For Separation And Characterization Of Soil Organic Matter Fractions. Geoderma. 56. 449457.

    • Search Google Scholar
    • Export Citation
  • Cañasveras, J.C., Barrón, V., Del Campillo, M.C., Torrent, J. & Gómez, J.A., 2010. Estimation Of Aggregate Stability Indices In Mediterranean Soils By Diffuse Reflectance Spectroscopy. Geoderma. 158. 7884.

    • Search Google Scholar
    • Export Citation
  • Chaney, K., & Swift, R.S., 1986. Studies An Aggregate Stability II. The Effect Of Humic Substances On The Stability Of Reformed Soil Aggregates. J. Soil Sci. 37. 337343.

    • Search Google Scholar
    • Export Citation
  • Coleman, C.D., Callaham, M.A Jr.. & Crossley Jr., D.A., 2018. Secondary Production: Activities Of Heterotrophic Organisms – Microbes. In: Fundamentals Of Soil Ecology (3rd Ed.). Academic Press. pp 4776.

    • Search Google Scholar
    • Export Citation
  • Concaret, J., 1967. Etude Des Mécanismes De Destruction Des Agrégats De Terre Au Contact De Solutions Aqueuses. Ann. Agron. 18. 99144.

    • Search Google Scholar
    • Export Citation
  • De Leenheer, L. & De Boodt, M., 1967. Aggregate Stability Determination By The Change In Mean Weight Diameter. In: De Boodt, M. (Ed.) West-European Methods for Soil Structure Determination, West-European Working Group on Soil Structure of the International Soil Science Society. Gent, VI. pp 2831.

    • Search Google Scholar
    • Export Citation
  • Di Gléria J., Klimes-Szmik A. & Dvoracsek M., 1957. Talajfizika És Talajkolloidika. Akadémiai Kiadó. Budapest.

  • Dickson, E.L., Rasiah, V. & Groenevelt, P.H., 1991. Comparison Of Four Prewetting Techniques In Wet Aggregate Stability Determination. Can. J. Soil Sci. 71. 6772.

    • Search Google Scholar
    • Export Citation
  • Dunai A. & Tóth Z., 2015. Szerves-És Műtrágyázás Tartamhatása A Talajaggregátumok Stabilitására Agyagbemosódásos Barna Erdőtalajon. Agrokem. Talajtan. 64. 2952.

    • Search Google Scholar
    • Export Citation
  • Dvoracsek M., 1950. A Talaj Rögszerkezetének Vizsgálata. Agrártud. 2. 703708.

  • Dvoracsek M., 1952. Adatok A Talajszerkezet Vízállóságának Fiziko-Kémiai Alapjaihoz. In: Agrokémiai Kutató Intézet 1950-Es Évkönyve. Mezőgazdasági Kiadó. Budapest. 141158.

    • Search Google Scholar
    • Export Citation
  • Dvoracsek, m., 1953. Hidrométeres Súlymérés Alkalmazása És Egy Gépesített Megoldás A Nedves Szitálásos Talajszerkezetvizsgálati Módszerekhez. Agrokem. Talajtan. 2. 425436.

    • Search Google Scholar
    • Export Citation
  • Dvoracsek M., Klimes-Szmik A. & B. Fejér S. 1953. A Kötöttség Befolyása A Talajmorzsák Vízállóságára. Agrokem. Talajtan. 2. 1726.

    • Search Google Scholar
    • Export Citation
  • Eijkelkamp, 2008. 08.13 Wet Sieving Apparatus Operation Instructions. Giesbeek, The Netherlands: Eijkelkamp

  • Elliott, E.T., 1986. Aggregate Structure And Carbon, Nitrogen, And Phosphorus In Native And Cultivated Soils. Soil Sci. Soc. Am. J. 50. 627633.

    • Search Google Scholar
    • Export Citation
  • Emerson, W.W. & Greenland, D.J., 1990. Soil Aggregates—Formation And Stability. In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B. & Herbillon, A.). Plenum Press, New York, N.Y., U.S.A. pp 485511.

    • Search Google Scholar
    • Export Citation
  • Gardner, W.R., 1956. Representation Of Soil Aggregate-Size Distributions By A Logarithmic-Normal Distribution. Soil Sci. Soc. Am. Pro. 20. (15) l51153.

    • Search Google Scholar
    • Export Citation
  • Haynes, R.J., & Francis, C.S., 1993. Changes In Microbiological Biomass C, Soil Carbohydrate Composition And Aggregate Stability Induced By Growth Of Selected Crop And Forage Species Under Field Conditions. J. Soil Sci. 44. 665675.

    • Search Google Scholar
    • Export Citation
  • Haynes, R.J. & Swift, R.S., 1990. Stability Of Soil Aggregates In Relation To Organic Constituents And Soil Water Content. J. Soil Sci. 41. 7383.

    • Search Google Scholar
    • Export Citation
  • Hbirkou, C., Martius, C., Khamzina, A., Lamers, J.P.A., Welp, G. & Amelung, W. 2011. Reducing Topsoil Salinity And Raising Carbonstocks Through Afforestation In Khorezm, Uzbekistan. J. Arid Environ. 75. (2) 146155.

    • Search Google Scholar
    • Export Citation
  • Hénin, S., Monnier, G. & Combeau, A., 1958. Methode Pour L’étude De La Stabilité Structurale Des Sols. Ann. Agron. 9. (1) 7190. (in French)

    • Search Google Scholar
    • Export Citation
  • Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego.

  • Huisz, A. 2007. A Talaj Aggregátum-Stabilitása Az Egységes Aggregátum-Stabilitási Mutató Tükrében. Acta Agr. Debr. Különszám. 26. 8399.

    • Search Google Scholar
    • Export Citation
  • ISO 10930: 2012. Soil Quality–Measurement Of The Stabilty Of Soil Aggregates Subjected To The Action Of Water. International Organization For Standarization, Geneva, Switzerland.

    • Search Google Scholar
    • Export Citation
  • Jakab, G., Dobos, E., Madarász, B., Szalai, Z. & Szabó, A.J., 2019: Spatial And Temporal Changes In Infiltration And Aggregate Stability: A Case Study Of A Subhumid Irrigated Cropland. Water. 11. 876.

    • Search Google Scholar
    • Export Citation
  • Jastrow, J.D. & Miller, R.M., 1991. Methods For Assessing The Effects Of Biota On Soil Structure. Agr. Ecosyst. Environ. 34. (1-4) 279303.

    • Search Google Scholar
    • Export Citation
  • John, B., Yamashita, T., Ludwig, B. & Flessa, H., 2005. Storage Of Organic Carbon In Aggregate And Density Fractions Of Silty Soils Under Different Types Of Land Use. Geoderma. 128. (1–2) 6379.

    • Search Google Scholar
    • Export Citation
  • Kachinsky, N.A., 1965. Soil Physics. Kolos Publisher, Moscow. (in Russian)

  • Kay, B.D., 1997. Soil Structure And Organic Carbon: A Review. In: Soil Processes And The Carbon Cycle (Eds.: Lal, R., Kimble, J.M., Follett, R.F. & Stewart B.A.). Crc, Boca Raton, Fl. pp 169197.

    • Search Google Scholar
    • Export Citation
  • Kay, B.D. & Dexter, A.R., 1990. Influence Of Aggregate Diameter, Surface Area And Antecedent Water Content On The Dispersibility Of Clay. Can. J. Soil Sci. 70. (4) 655671.

    • Search Google Scholar
    • Export Citation
  • Kemper, W.D. & Koch, E.J., 1966. Aggregate Stability Of Soils From Western United States And Canada. USDA-ARS Techn. Bull. 1355. Washington, DC.

    • Search Google Scholar
    • Export Citation
  • Kemper, W.D. & Rosenau, R.C. 1986. Aggregate Stability And Size Distribution. In: Methods Of Soil Analysis. Part 1. Physical And Mineralogical Methods (ed.: Klute, A.) 2nd ed. Agronomy Monograph 9. ASA And SSSA, Madison, Wi. 425442.

    • Search Google Scholar
    • Export Citation
  • Klimes-Szmik A., 1962. A Talaj Fizikai Tulajdonságainak Vizsgálata. In: BALLENEGGER, R. & DI GLÉRIA, J. (szerk.): Talaj- és trágyavizsgálati módszerek. Mezőgazdasági Kiadó. 83134.

    • Search Google Scholar
    • Export Citation
  • Krámer M., 1952. Talajmorzsák Vízállóságának Vizsgálata. Agrokem. Talajtan. 1. 495510.

  • Lal, R. & Shukla, M.K., 2004. Principles Of Soil Physics. Marcel Dekker, New York.

  • Le Bissonnais, Y., 1988. Analysis Of The Mechanisms Of Disaggregation And The Mobilisation Of Particles Of Soil Under The Action Of Rain. Phd Thesis. University Of Orléans, (in French)

    • Search Google Scholar
    • Export Citation
  • Le Bissonnais, Y., 1996. Aggregate Stability And Assessment Of Soil Crustability And Erodibility: Theory And Methodology. Eur J. Soil Sci. 47. (4) 425437.

    • Search Google Scholar
    • Export Citation
  • Le Bissonnais, Y., Bruand. A. & Jamagne, M., 1989. Laboratory Experimental Study Of Soil Crusting: Relation Between Aggregates Breakdown And Crust Structure. Catena. 16. 377392.

    • Search Google Scholar
    • Export Citation
  • Lehrsch, G.A. & Jolley, P.M., 1992. Temporal Changes In Wet Aggregate Stability. Transactions of the ASAE. 35. (2) 493498.

  • Le Souder, C., Le Bissonnais, Y. & Robert, M., 1991. Influence Of A Mineral Conditioner On The Mechanisms Of Disaggregation And Sealing Of Soil Surface. Soil Sci. 152. 395402.

    • Search Google Scholar
    • Export Citation
  • Lobe, I., Sandhage-Hofmann, A., Brodowski, S., Du Preez, C.C. & Amelung, W., 2011. Aggregate Dynamics And Associated Soilorganic Matter Contents As Influenced By Prolonged Arable Cropping In The South African Highveld. Geoderma. 162. (3-4) 251259.

    • Search Google Scholar
    • Export Citation
  • Loch, R.J., & Foley, J.L., 1994. Measurement Of Aggregate Breakdown Under Rain: Comparison With Tests Of Water Stability And Relationships With Field Measurements Of Infiltration. Aust. J. Soil Res. 32. 701720.

    • Search Google Scholar
    • Export Citation
  • Lu, J., Zheng, F., Li, G., Bian, F. & An, J., 2016. The Effects Of Raindrop Impact And Runoff Detachment On Hillslope Soil Erosion And Soil Aggregate Loss In The Mollisol Region Of Northeast China. Soil Till. Res. 161. 7985.

    • Search Google Scholar
    • Export Citation
  • Major I., 1974. Aggregátum-Minőségi Elemzések Felhasználása A Talaj Erodálhatósága Megítélésében. Kísérl. Közl. Növényt. LXVI/A. 1934.

    • Search Google Scholar
    • Export Citation
  • Makó A., 2018. Új Talajfizikai Mérő- És Becslőmódszerek Kidolgozása Vizes És Nemvizes Folyadékfázist Tartalmazó Talajokra. MTA Doktori Értékezés. Budapest.

    • Search Google Scholar
    • Export Citation
  • Marquetant K., 1952. Gyors Talajszerkezet Vizsgálati Módszer. Agrártud. 4. (2) 6971.

  • Marshall, T.J. & Holmes, J.W., 1979. Soil Physics. Cambridge University Press, Cambridge.

  • Martinez-Mena, M., Deeks, L.K. & Williams A.G., 1999. An Evaluation Of Fragmentation Fractal Dimension Technique To Determine Soil Erodibility. Geoderma. 90. (1-2) 8789.

    • Search Google Scholar
    • Export Citation
  • Matkin, E.A. & Smart, P. 1987. A Comparison Of Tests Of Soil Structural Stability. J. Soil Sci. 38. 123135.

  • Mazurak, A.P., 1950. Effect Of Gaseous Phase On Water-Stable Synthetic Aggregates. Soil Sci. 69. (2) 135148.

  • Mccalla, T.M., 1944. Water Drop Method Of Determining Stability Of Soil Structure. Soil Sci. 58. (2) 117123.

  • Meyer, L. & Von Rennenkampff, U., 1936. A New Automatic Apparatus For Crumb Analysis By Tinlin’s Method. Ztschr. Pflanz. Dung. 43. 268280. (in German)

    • Search Google Scholar
    • Export Citation
  • Mulla, D.J., Huyck, L.M. & Reganold, J.P., 1992. Temporal Variation In Aggregate Stability On Conventional And Alternative Farms. Soil Sci. Soc. Am. J. 56. 16201624.

    • Search Google Scholar
    • Export Citation
  • Murer, E.J., Baumgarten, A., Eder, G., Gerzabek, M.H., Kandeler, E. & Rampazzo, N., 1993. An Improved Sieving Machine For Estimation Of Soil Aggregate Stability (SAS). In: International Workshop On Methods Of Research On Soil Structure/Soil Biota Interrelationships (eds.: Brussaard, L. & Koostra, M.J.). Geoderma. 56. 539547.

    • Search Google Scholar
    • Export Citation
  • Murray, R.S. & Quirk, J.P. 1990. Interparticle Forces In Relation To The Stability Of Soil Aggregates. In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J.). NATO ASI Series (Series B: Physics), vol 214. Springer, Boston, Ma. pp 439461.

    • Search Google Scholar
    • Export Citation
  • Nichols, K.A. & Toro, M., 2011. A Whole Soil Stability Index (WSSI) For Evaluating Soil Aggregation. Soil Till. Res. 111. (2) 99104.

  • Niewczas, J. & Witkowska-Walczak, B., 2003. Index Of Soil Aggregate Stability As Linear Function Value Of Transition Matrix Elements. Soil Till. Res. 70. (2) 121130.

    • Search Google Scholar
    • Export Citation
  • Niewczas, J. & Witkowska-Walczak, B., 2003. Use Of Simplex Algorithm For Determination Of Soil Aggregation Extreme Changes. Int. Agrophys. 17. 169174.

    • Search Google Scholar
    • Export Citation
  • Nimmo, J.R., 2004, Aggregation: Physical Aspects. In:. Encyclopedia Of Soils In The Environment (ed.: Hillel, D.). Academic Press. London. pp 2835.

    • Search Google Scholar
    • Export Citation
  • North, P.F., 1976.Towards An Absolute Measurement Of Soil Structural Stability Using Ultrasound. J. Soil Sci. 27. (4) 451459.

  • Oades, J.M., 1990. Associations Of Colloids In Soil Aggregates, In: Soil Colloids And Their Associations In Aggregates (eds.: De Boodt, M.F., Hayes, M.H.B. & Herbillon, A.). NATO, AI Series, Series B: Physics Vol. 215, Plenum Press, Nw York. pp 463483.

    • Search Google Scholar
    • Export Citation
  • Oades, J.M., 1993. The Role Of Biology In The Formation, Stabilization And Degradation Of Soil Structure. In: International Workshop On Methods Of Research On Soil Structure/Soil Biota Interrelationships (eds.: Brussaard, L. & Koostra, M.J.). Geoderma. 56. 377400.

    • Search Google Scholar
    • Export Citation
  • Oades, J.M. & Waters, A.G., 1991. Aggregate Hierarchy In Soils. Aust. J. Soil Res. 29. (6) 815828.

  • Peng, X.H., Horn, R. & Hallett, P., 2015. Soil Structure And Its Functions In Ecosystems: Phase Matter & Scale Matter. Soil Till. Res. 146. 13.

    • Search Google Scholar
    • Export Citation
  • Perfect, E. & Kay, B.D. 1991. Fractal Theory Applied To Soil Aggregation. Soil Sci. Soc. Am. J. 55. 15521558.

  • Perfect, E. & Kay, B.D., 1995. Applications Of Fractals In Soil And Tillage Research: A Review. Soil Till. Res. 36. (1-2) 120.

  • Pojasok, T., & Kay, B.D., 1990. Assessment Of A Combination Of Wet Sieving And Turbidimetry To Characterize The Structural Stability Of Moist Aggregates. Can. J. Soil Sci. 70. (1) 3342.

    • Search Google Scholar
    • Export Citation
  • Rajkai, K., Tóth, B., Barna, G., Hernádi, H., Kocsis, M. & Makó, A., 2015. Particle-Size And Organic Matter Effects On Structure And Water Retention Of Soils. Biologia. 70. 14561461.

    • Search Google Scholar
    • Export Citation
  • Roberson E.B., Sarig, S. & Firestone, M.K., 1991. Cover Crop Management Of Polysaccharide-Mediated Aggregation In An Orchard Soil. Soil Sci. Soc. Am. J. 55. 734739.

    • Search Google Scholar
    • Export Citation
  • Rohošková, M. & Valla, M., 2004: Comparison Of Two Methods For Aggregate Stability Measurement–A Review. Plant Soil Environ. 50. (8) 379382.

    • Search Google Scholar
    • Export Citation
  • Salako, F.K., 2006. Fractal Scaling Of Soil Particles In Agricultural Landscapes Of Nigerian Savannas. Int. Agrophys. 20. (4) 337344.

    • Search Google Scholar
    • Export Citation
  • Savvinov, N.I., 1931. Soil Structure And Its Stability. In: Virgin, Fallow, And Old Arable Lands (ed.: Williams, V.R.). Sel’kolkhozgiz. Moscow. (in Russian)

    • Search Google Scholar
    • Export Citation
  • Sekera, F. & Brunner, A., 1943. Beiträge Zur Methodik Der Gareforschung. Z. Pflanz. Bodenkunde. 29. 169212.

  • Sekiguchi, R., Saito, H., Tanaka, H. & Kohgo, Y., 2021. Temperature Dependence Of Volcanic Ash Soil Aggregate Stability: Effects Of Fertilizer Application. Soil Till. Res. 207. 104870.

    • Search Google Scholar
    • Export Citation
  • Six, J., Bossuyt, H., Degryze, S. & Denef, K., 2004. A History Of Research On The Link Between (Micro)Aggregates, Soil Biota, And Soil Organic Matter Dynamics. Soil Till. Res. 79. 731.

    • Search Google Scholar
    • Export Citation
  • Six, J., Elliott, E.T. & Paustian, K., 1999. Aggregate And Soil Organic Matter Dynamics Under Conventional And No‐Tillage Systems. Soil Sci. Soc. Am. J. 63. 13501358.

    • Search Google Scholar
    • Export Citation
  • Six, J., Elliott, E.T. & Paustian, K., 2000. Soil Structure And Soil Organic Matter: II. A Normalized Stability Index And The Effect Of Mineralogy. Soil Sci. Soc. Am. J. 64. 10421049.

    • Search Google Scholar
    • Export Citation
  • Stefanovits P., Filep G. & Füleky G., 1999. Talajtan. Mezőgazda Kiadó, Budapest.

  • Strickland, T.C., Sollins, P., Schimel, D.S. & Kerle, E.A., 1988. Aggregation And Aggregate Stability In Forest And Range Soils. Soil Sci. Soc. Am. J. 52. (3) 829833.

    • Search Google Scholar
    • Export Citation
  • Sullivan, L.A., 1990. Soil Organic Matter, Air Encapsulation And Water-Stable Aggregation. J. Soil Sci. 41. 529534.

  • Sun, H., Larney, F.J. & Bullock, M.S., 1995. Soil Amendments And Water-Stable Aggregation Of A Desurfaced Dark Brown Chernozem. Can. J. Soil Sci. 75. 319325.

    • Search Google Scholar
    • Export Citation
  • Tavares-Filho, J., Feltran, C.T.M., De Oliveira, J.F. & De Almeida, E., 2012. Modelling Of Soil Penetration Resistance For An Oxisol Under No-Tillage. Rev. Bras. Cienc. Solo. 36. (1) 8995.

    • Search Google Scholar
    • Export Citation
  • Tisdall, J.M., 1996. Formation Of Soil Aggregates And Accumulation Of Soil Organic Matter. In: Structure And Organic Matter Storage In Agricultural Soils (eds.: Carter, M.R. & Stewart, B.A.). Crc Press, Boca Raton, Fl, Usa. 5796.

    • Search Google Scholar
    • Export Citation
  • Tisdall, J.M. & Oades, J.M., 1979. Stabilization Of Soil Aggregates By The Root Systems Of Ryegrass. Aust. J. Soil Res. 17. 429441.

  • Tisdall, J.M. & Oades, J.M., 1982. Organic Matter And Water-Stable Aggregates In Soils. J. Soil Sci. 33. (2) 141163.

  • Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N. & Kögel-Knabner, I., 2018. Microaggregates In Soils. J. Plant Nutr. Soil Sc. 181. (1) 104136.

    • Search Google Scholar
    • Export Citation
  • Tyulin, A.F., 1928. Problems Of Soil Structure. II. Aggregate Analysis As An Auxiliary Method For Assessing The Real Soil Structure.” In: Results of Works of the Agrochemical Department, Perm Experimental Station, on Flax (Perm) (in Russian).

    • Search Google Scholar
    • Export Citation
  • Vageler, P., 1932. Der Kationen- Und Wasserhaushalt Des Mineralbodens: Vom Standpunkt Der Physikalischen Chemie Und Seine Bedeutung Für Die Land- Und Forstwirtschaftliche Praxis. Springer, Verlag Berlin Heidelberg.

    • Search Google Scholar
    • Export Citation
  • Van Bavel, C.H.M., 1949. Mean Weight Diameter Of Soil Aggregates As A Statistical Index Of Aggregation. Soil Sci. Soc. Am. Pro. 14. 2023.

    • Search Google Scholar
    • Export Citation
  • Van Steenbergen, M., Cambardella, C.A., Elliott, E.T. & Merckx, R., 1991. Two Simple Indexes For Distributions Of Soil Components Among Size Classes. Agr. Ecosyst. Environ. 34. (1-4) 335340.

    • Search Google Scholar
    • Export Citation
  • Várallyay G., 1993. A Talaj Szerkezeti Állapotának Jellemzése. In: BUZÁS, I. (Szerk.): Talaj- És Agrokémiai Vizsgálati Módszerkönyv 1. INDA 4231 Kiadó, Budapest. pp 7182.

    • Search Google Scholar
    • Export Citation
  • Williams, B.G., Greenland, D.J., Lindstrom, G.R. & Quirk, J.P., 1966. Techniques For The Determination Of The Stability Of Soil Aggregates. Soil Sci. 101. 157163.

    • Search Google Scholar
    • Export Citation
  • Williams, N.D. & Petticrew, E.L., 2009. Aggregate Stability In Organically And Conventionally Farmed Soils. Soil Use Manage. 25. (3) 284292.

    • Search Google Scholar
    • Export Citation
  • Yoder, R.E., 1936. A Direct Method Of Aggregate Analysis Of Soils And A Study Of Physical Nature Of Erosion Losses. J. Am. Soc. Agron. 28. 337351.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 0 96 12
Sep 2024 0 151 13
Oct 2024 0 1314 7
Nov 2024 0 1627 13
Dec 2024 0 880 6
Jan 2025 0 186 6
Feb 2025 0 0 0