View More View Less
  • 1 Université Paris VI, B8A25 175 rue du Chevaleret 75013 Paris, France
Full access

We characterize the lower classes of the integrated fractional Brownian motion by an integral test.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Beran, J., Statistics for Long-Mem,ory Processes, Monographs on Statistics and Applied Probability, 61, Chapman and Hall, 1994. MR 96b:62138

    • Search Google Scholar
    • Export Citation
  • [2]

    Borell, C., Convex measures on locally convex spaces, Ark. Math. 12 (1974), 239252. MR 52#9311

  • [3]

    El-Nouty, C., On the lower classes of fractional Brownian motion, Studia Sci. Math. Hunyar. 37 (2001). MR 2003d:60159

  • [4]

    El-Nouty, C., Lower classes of fractional Brownian motion under Holder norms, Limit Theorems in Probability and Statistics, Balatonlelle, 1999 (I. Berkes, E. Csâki, M. Csörgo, eds.), Jânos Bolyai Mathematical Society, Budapest, 2002.

    • Search Google Scholar
    • Export Citation
  • [5]

    Embrechts, P. and Maejima , М., Selfsimilar Processes, Princeton Series in Applied Mathematics, Princeton University Press, Princeton NJ, 2002. MR 1920153

    • Search Google Scholar
    • Export Citation
  • [6]

    Khoshnevisan, D. and Shi, Z., Chung’s law for integrated Brownian motion, Trans. Amer. Math. Soc. 350 (1998), 42534264. MR 98m:60056

    • Search Google Scholar
    • Export Citation
  • [7]

    Kuelbs, J., Li, W. V. and Shao Q. М., Small Ball Probabilities for Gaussian Processes with Stationary Increments under Holder norms, J. Theoret. Probab. 8 (1995), 361386. MR 96b:60096

    • Search Google Scholar
    • Export Citation
  • [8]

    Li, W. V. and Linde, W., Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27 (1999), 15561578. MR 2001c:60059

    • Search Google Scholar
    • Export Citation
  • [9]

    Li, W. V. and Shao Q. М., Small Ball Estimates for Gaussian Processes under Sobolev type norms, J. Theoret. Probab. 12 (1999), 699720. MR 2001g:60087

    • Search Google Scholar
    • Export Citation
  • [10]

    Li, W. V. and Shao, Q. М., Gaussian Processes: Inequalities, Small Ball Probabilities and Applications, Stochastic Processes: Theory and Methods, Handbook of Statistics 19, 2001. MR 1861734

    • Search Google Scholar
    • Export Citation
  • [11]

    Révész, P., On the increments of the Wiener and related processes, Ann. Probab. 10 (1982), 613622. MR 83i:60048

  • [12]

    Révész, P., Random, walk in random and non-random, environments, World Scientific Publishing Co., Teaneck, NJ, 1990. MR 92c:60096

  • [13]

    Talagrand, М., Lower classes of fractional Brownian motion, J. Theoret. Probab. 9 (1996), 191213. MR 97j:60151

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE